

Lecture Notes in Computer Science 3354
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Maurice Margenstern (Ed.)

Machines, Computations,
and Universality

4th International Conference, MCU 2004
Saint Petersburg, Russia, September 21-24, 2004
Revised Selected Papers

13

Volume Editor

Maurice Margenstern
University of Metz, LITA, EA 3097
Île du Saulcy, 57045 Metz, France
E-mail: margens@sciences.univ-metz.fr

Library of Congress Control Number: 2005921802

CR Subject Classification (1998): F.1, F.4, F.3, F.2

ISSN 0302-9743
ISBN 3-540-25261-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 11404262 06/3142 5 4 3 2 1 0

Preface

In this volume, the reader will first find the invited talks given at the conference.
Then, in a second part, he/she will find the contributions which were presented
at the conference after selection. In both cases, papers are given in the alphabetic
order of the authors.

MCU 2004 was the fourth edition of the conference in theoretical computer
science, Machines, Computations and Universality, formerly, Machines et calculs
universels. The first and the second editions, MCU 1995 and MCU 1998, were
organized by Maurice Margenstern, respectively in Paris and in Metz (France).
The third edition, MCU 2001, was the first one to be organized outside France
and it was held in Chişinău (Moldova). Its co-organizers were Maurice Margen-
stern and Yurii Rogozhin. The proceedings of MCU 2001 were the first to appear
in Lecture Notes in Computer Science, see LNCS 2055.

From its very beginning, the MCU conference has been an international sci-
entific event. For the fourth edition, Saint Petersburg was chosen to hold the
meeting. The success of the meeting confirmed that the choice was appropriate.

MCU 2004 also aimed at high scientific standards. We hope that this vol-
ume will convince the reader that this tradition of the previous conferences was
also upheld by this one. Cellular automata and molecular computing are well
represented in this volume. And this is the case for quantum computing, formal
languages and the theory of automata too. MCU 2004 also did not fail its tradi-
tion to provide our community with important results on Turing machines. Also
a new feature of the Saint Petersburg edition was the contributions on analog
models and the presence of unconventional models.

Here is an opportunity for me to thank the referees of the submitted papers
for their very efficient work. The members of the program committee gave me
decisive help on this occasion. Thanks to them, namely Anatoly Beltiukov (co-
chair), Erzsebet Csuhaj-Varjú, Nikolai Kossovskii (co-chair), Kenichi Morita,
Gheorghe Păun, Yurii Rogozhin and Arto Salomaa, I can offer the reader this
issue of LNCS.

The local organizing committee included Anatoly Beltiukov, Nikolai
Kossovskii, Michail Gerasimov, Igor Soloviov, Sorin Stratulat and, especially,
Elena Novikova.

MCU 2004 could not have been held without decisive supports. For this
reason, I thank the Laboratoire d’Informatique Théorique et Appliquée, LITA,
the University of Metz, and one of its faculties, UFR MIM.

Metz, 29 November 2004 Maurice Margenstern

VI Organization

Organization

MCU 2004 was organized by the Laboratoire d’Informatique Théorique et Ap-
pliquée (LITA), University of Metz, Metz, France and the Euler International
Mathematical Institute, part of the Saint Petersburg Department of the Steklov
Institute of Mathematics, Russia.

Program Committee

Anatoly Beltiukov Co-chair, Udmurt University, Izhevsk, Russia
Erzsebet Csuhaj-Varju Hungarian Academy of Sciences, Hungary
Nikolai Kossovski Saint Petersburg State University, Russia
Maurice Margenstern Co-chair, LITA, University of Metz, France
Kenichi Morita Hiroshima University, Japan
Yurii Rogozhin Institute of Mathematics and Computer Science,

Chişinău, Moldova
Arto Salomaa Academy of Finland and Turku Centre for Com-

puter Science, Finland

Sponsoring Institutions

Laboratoire d’Informatique Théorique et Appliquée (LITA), University of Metz,
Metz, France and the UFR MIM.

Table of Contents

Invited Lectures

Algorithmic Randomness, Quantum Physics, and Incompleteness 1
C.S. Calude

On the Complexity of Universal Programs . 18
A. Colmerauer

Finite Sets of Words and Computing . 36
J. Karhumäki

Universality and Cellular Automata . 50
K. Sutner

Leaf Language Classes . 60
K.W. Wagner

Selected Contributions

Computational Completeness of P Systems with Active Membranes
and Two Polarizations . 82
A. Alhazov, R. Freund, G. Păun

Computing with a Distributed Reaction-Diffusion Model 93
S. Bandini, G. Mauri, G. Pavesi, C. Simone

Computational Universality in Symbolic Dynamical Systems 104
J.-C. Delvenne, P. K̊urka, V.D. Blondel

Real Recursive Functions and Real Extensions of Recursive Functions . . . 116
O. Bournez, E. Hainry

Ordering and Convex Polyominoes . 128
G. Castiglione, A. Restivo

Subshifts Behavior of Cellular Automata. Topological Properties and
Related Languages . 140
G. Cattaneo, A. Dennunzio

Evolution and Observation: A Non-standard Way to Accept Formal
Languages . 153
M. Cavaliere, P. Leupold

The Computational Power of Continuous Dynamic Systems 164
J. Mycka, J.F. Costa

VIII Table of Contents

Abstract Geometrical Computation for Black Hole Computation 176
J. Durand-Lose

Is Bosco’s Rule Universal? . 188
K.M. Evans

Sequential P Systems with Unit Rules and Energy Assigned to
Membranes . 200
R. Freund, A. Leporati, M. Oswald, C. Zandron

Hierarchies of DLOGTIME-Uniform Circuits . 211
C. Iwamoto, N. Hatayama, K. Morita, K. Imai, D. Wakamatsu

Several New Generalized Linear- and Optimum-Time Synchronization
Algorithms for Two-Dimensional Rectangular Arrays 223
H. Umeo, M. Hisaoka, M. Teraoka, M. Maeda

Register Complexity of LOOP-, WHILE-, and GOTO-Programs 233
M. Holzer, M. Kutrib

Classification and Universality of Reversible Logic Elements with
One-Bit Memory . 245
K. Morita, T. Ogiro, K. Tanaka, H. Kato

Universal Families of Reversible P Systems . 257
A. Leporati, C. Zandron, G. Mauri

Solving 3CNF-SAT and HPP in Linear Time Using WWW 269
F. Manea, C. Mart́ın-Vide, V. Mitrana

Completing a Code in a Regular Submonoid of the Free Monoid 281
J. Néraud

On Computational Universality in Language Equations 292
A. Okhotin

Attacking the Common Algorithmic Problem by Recognizer P Systems . . 304
M.J. Pérez Jiménez, F.J. Romero Campero

On the Minimal Automaton of the Shuffle of Words and Araucarias 316
R. Schott, J.-C. Spehner

Author Index . 329

When a distinguished but elderly scientist states

that something is possible, he is almost certainly right.

When he states that something is impossible, he is

almost certainly wrong. Arthur C. Clarke

Algorithmic Randomness, Quantum Physics,
and Incompleteness

Cristian S. Calude

Department of Computer Science
University of Auckland, New Zealand

cristian@cs.auckland.ac.nz

Abstract. Is randomness in quantum mechanics “algorithmically ran-
dom”? Is there any relation between Heisenberg’s uncertainty relation
and Gödel’s incompleteness? Can quantum randomness be used to tres-
pass the Turing’s barrier? Can complexity shed more light on incom-
pleteness? In this paper we use variants of “algorithmic complexity” to
discuss the above questions.

1 Introduction

Whether a U238 nucleus will emit an alpha particle in a given interval of time
is “random”. If we collapse a wave function, what it ends of being is “random”.
Which slit the electron went through in the double slit experiment, again, is
“random”.

Is there any sense to say that “random” in the above sentences means “truly
random”? When we flip a coin, whether it’s heads or tails looks random, but
it’s not truly random. It’s determined by the way we flip the coin, the force on
the coin, the way force is applied, the weight of the coin, air currents acting on
it, and many other factors. This means that if we calculated all these values,
we would know if it was heads or tails without looking. Without knowing this
information—and this is what happens in practice—the result looks as if it’s
random, but it’s not truly random.

Is quantum randomness “truly random”? Our working model of “truly ran-
dom” is “algorithmic randomness” in the sense of Algorithmic Information The-
ory (see, for example, [5]). In this paper we compare quantum randomness with
algorithmic randomness in an attempt to obtain partial answers to the following
questions: Is randomness in quantum mechanics “algorithmically random”? Is
there any relation between Heisenberg’s uncertainty relation and Gödel’s incom-
pleteness? Can quantum randomness be used to trespass the Turing’s barrier?
Can complexity cast more light on incompleteness? Our analysis is tentative and
raises more questions than offers answers.

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 1–17, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 C.S. Calude

2 Algorithmic Randomness

The main idea of Algorithmic Information Theory (shortly, AIT) was traced
back in time (see [15,16]) to Leibniz, 1686 ([36], 40–41). If we have a finite
set of points (e.g. say, observations of an experiment), then one can find many
mathematical formulae each of which produces a curve passing through them
all, in the order that they were given. Can we say that the given set of points
satisfy the “law” described by such a mathematical formula? If the set is very
large and complex, and the formula is comparatively simpler, then, indeed, we
have a law. In Chaitin’s words [15], “a scientific theory is a computer program
that calculates the observations, and that the smaller the program is, the better
the theory.”1 If the mathematical formula is not substantially simpler than the
data itself, then we don’t have a law; still, there may be another mathematical
formula qualifying as “law” for the given set. If no mathematical formula is
substantially simpler than the set itself, the set is unstructured, law-less. Using
the computer paradigm, if no program is substantially simpler than the set itself,
then the set is “algorithmically random”.

Of course, to make ideas precise we need to define the basic notions, complex
finite set, (substantially) smaller program, etc. A convenient way is to code all
objects as binary strings and use Turing machines as a model of computation.

For technical reasons (see [5,23]), our model is a self-delimiting Turing ma-
chine, that is a Turing machine C which processes binary strings into binary
strings and has a prefix-free domain: if C(x) is defined and y is either a proper
prefix or an extension of x, then C(y) is not defined. The self-delimiting Turing
machine U is universal if for every self-delimiting Turing machine C there exists
a fixed binary string p (the simulator) such that for every input x, U(px) = C(x):
either both computations U(px) and C(x) stop and, in this case they produce the
same output or both computations never stop. Universal self-delimiting Turing
machines can be effectively constructed. The relation with computability theory
is given by the following theorem:

A set is computably enumerable (shortly, c.e.) iff can be generated by
some self-delimiting Turing machine.

The Omega number introduced in [13]

ΩU =
∑

U(x) stops
2−|x| = 0.ω1ω2 . . . ωn . . . (1)

is the halting probability of U ; |x| denotes the length of the (binary) string x.
Omega is one of the most important concepts in algorithmic information theory
(see [5]).

1 The modern approach, equating a mathematical formula with a computer program,
would probably not surprise Leibniz, who designed a succession of mechanical cal-
culators, wrote on the binary notation (in 1679) and proposed the famous “let us
calculate” dictum; see more in Davis [20], chapter one.

Algorithmic Randomness, Quantum Physics, and Incompleteness 3

The program-size complexity induced by C is defined by HC(x) = min{|w| :
C(w) = x} (with the convention that strings not produced by C have infinite
complexity). The complexity HC measures the power of C to compress strings.
For example, if HC(x) ≤ |x| − k, then C can compress at least k bits of x; if
HC(x) > |x| − k, then C cannot compress more than k − 1 bits of x. A string
x is algorithmically k–random with respect to C if the complexity HC(x) is
maximal up to k among the complexities of all strings of the same length, that
is, HC(x) ≥ max|y|=|x|HC(y)− k.

One might suppose that the complexity of a string would vary greatly be-
tween choices of self-delimiting Turing machine. The complexity difference be-
tween C and C′ is at most the length of the shortest program for C′ that sim-
ulates C. Complexities induced by some self-delimiting Turing machines (called
universal) are almost optimal, therefore, the complexity of a string is fixed to
within an additive constant. This is the “invariance theorem” (see [5], p. 36):

For every self-delimiting universal Turing machine U and self-delimiting
Turing machine C there exists a constant ε > 0 (which depends upon U
and C) such that for every string x, HU (x) ≤ ε + HC(x).

In what follows we will fix a self-delimiting universal Turing machine U , write
H instead of HU , and use the term “machine” to denote a “self-delimiting Turing
machine”.

Algorithmic random strings are defined as above using U instead of C. This
approach can be extended to “algorithmic random sequences” by requiring that
the initial prefixes of the sequence cannot be compressed with more than a fixed
number of bits, i.e. they are all “almost random”: A sequence x = x1x2 . . . , xn . . .
is algorithmic random if there exists a positive constant c > 0 such that for all
n > 0, H(x1x2 . . . , xn) ≥ n− c. Chaitin’s theorem [13] states that

The bits of ΩU (i.e. the sequence ω1ω2 . . . ωn . . . in (1)) form an algo-
rithmic random sequence.

3 From Algorithmic Randomness to Uncertainty

The randomness of quantum processes has been an integral part of the inter-
pretation of quantum phenomena almost from the very outset of the theory.
In fact, quantum physics is the only theory within the fabric of modern physics
that integrates and is based on randomness. Quantum randomness has been con-
firmed over and over again by theoretical and experimental research conducted
in physics since the first decades of the 20th century.2

But there is a problem: quantum randomness is postulated and is not at
all a mathematical consequence of the standard model of quantum mechanics.

2 The conclusion of [4] is : “We find no evidence for short- or long-term correlations
in the intervals of the quantum jumps or in the decay of the quantum states, in
agreement with quantum theory”.

4 C.S. Calude

We don’t know whether the randomness of quantum mechanics is genuine or
simply an artefact of the particular mathematical apparatus physicists employ
to describe quantum phenomena. Being pragmatic, perhaps we can accept the
randomness because of the immense success of the applications of quantum me-
chanics. But even here there is room for doubt. As Wolfram ([56], p. 1064) has
pointed out, “a priori, there may in the end be no clear way to tell whether ran-
domness is coming from an underlying quantum process that is being measured,
or from the actual process of measurement.”

So, what is the relation between algorithmic randomness and quantum ran-
domness? A detailed discussion appears in Svozil [53] (see also [52]). Yurtsever
[57] argued that a string of quantum random bits is, almost certainly, algorith-
mically random. Here we take a different approach.

First and foremost, there is a strong computational similarity: both algo-
rithmic and quantum randomness are uncomputable, they cannot be gener-
ated/simulated by any machine.3 From this point of view, both types of random-
ness are fundamentally different from “deterministic chaos” (computable systems
in which unobservably small causes can produce large effects) or pseudo-random
numbers (generated by software functions; an elegant solution is the so-called
“rule 30” discovered by Wolfram [55]).

The strong uncomputability of algorithmic randomness is expressed by the
theorem:

The set of algorithmic random strings is immune.

That is, no infinite set of algorithmic random strings is c.e. (see [5], p. 119). In
particular, the set of prefixes of a random infinite sequence is immune, hence the
sequence itself is uncomputable.

Quantum randomness is postulated by Born’s measurement postulate: When
a closed quantum physical system in state V = (v1,1, v2,1, . . . , vn,1)T is measured
it yields outcome i with probability |vi,1|2. In this sense, according to Milburn
(see [39], p. 1), the “physical reality is irreducibly random”. For Peres [44],
“in a strict sense quantum theory is a set of rules allowing the computation of
probabilities for the outcomes of tests which follow specific preparations”. In
the standard model (Copenhagen interpretation) of quantum physics, quantum
processes cannot be simulated on a classical Turing machine, not even on a prob-
abilistic Turing machine (in which the available transitions are chosen randomly
with equal probability at each step). The reason is Bell’s Theorem, which, in
Feynman’s words ([26], p. 476), reads: “It is impossible to represent the results
of quantum mechanics with a classical universal device.”

A recently proposed complexity-theoretic analysis [11] of Heisenberg’s un-
certainty principle (see [29]) reveals more facts. The uncertainty principle states

3 It is also very difficult for humans to produce random digits; based on ‘history’,
computer programs can predict, on average, some of the digits humans will write
down.

Algorithmic Randomness, Quantum Physics, and Incompleteness 5

that the more precisely the position is determined, the less precisely the momen-
tum is known in this instant, and vice versa. In its exact form (first published
by Kennard [33]), for all normalized state vectors |Ψ〉,

Δp ·Δq ≥ h̄/2,

where Δp and Δq are standard deviations of momentum and position, i.e.

Δ2
p = 〈Ψ |p2|Ψ〉 − 〈Ψ |p|Ψ〉2; Δ2

q = 〈Ψ |q2|Ψ〉 − 〈Ψ |q|Ψ〉2.

For our analysis it is more convenient to define a variation of the program-size
complexity, namely the complexity measure ∇C(x) = min{N(w) | C(w) = x},
the smallest integer whose binary representation produces x via C. Clearly, for
every string x,

2HC(x) ≤ ∇C(x) ≤ 2HC(x)+1 − 1.

Therefore we can say that ΔC(x), the uncertainty in the value ∇C(x), is the
difference between the upper and lower bounds given, namely ΔC(x) = 2HC(x).

The invariance theorem can now be stated as follows:

For every universal machine U and machine C there exists a con-
stant ε > 0 (which depends upon U and C) such that for every string
x, ΔU (x) ≤ ε ·ΔC(x).

Let Δs = 2−s be the probability of choosing a program of length s. Chaitin’s
theorem (cited at the end of Section 2) stating that the bits of ΩU in (1) form
a random sequence can now be presented as a “formal uncertainty principle”:

For every machine C there is a constant ε > 0 (which depends upon U
and C) such that

Δs ·ΔC(ω1 . . . ωs) ≥ ε. (2)

The inequality (2) is an uncertainty relation, as it reflects a limit to which we
can simultaneously increase both the accuracy with which we can approximate
ΩU and the complexity of the initial sequence of bits we compute; it relates the
uncertainty of the output to the size of the input. When s grows indefinitely,
Δs tends to zero in contrast with ΔC(ω1 . . . ωs) which tends to infinity; in fact,
the product is not only bounded from below, but increases indefinitely (see also
[11]). From a complexity viewpoint (2) tells us that there is a limit ε up to which
we can uniformly compress the initial prefixes of the binary expansion of ΩU .

The above “formal uncertainty principle” (much like Heisenberg’s uncertainty
principle) is a general one; they both apply to all systems governed by the wave
equation, not just quantum waves. We could, for example, use sound waves
instead of a quantum system by playing two pure tones with frequencies f and
f + ΔC(ω1 . . . ωs). Then Δs corresponds to the complementary observable, the
length of time needed to perceive a beat.

6 C.S. Calude

For the remainder of this section we assume that quantum randomness is
algorithmic randomness.4

The two conjugate coordinates are the random real and the binary numbers
describing the programs that generate its prefixes. Then, the uncertainty in the
random real given an n-bit prefix is 2−n, and the uncertainty in the size of the
shortest program that generates it is, to within a multiplicative constant, 2n.

The Fourier transform is a lossless transformation, so all the information
contained in the delta function δΩ(x) = 1 if x = Ω, δΩ(x) = 0, otherwise, is pre-
served in the conjugate. Therefore, if you need n bits of information to describe
a square wave convergent on the delta function, there must be n bits of infor-
mation in the Fourier transform of the square wave. Since both the information
in the transformed square wave and the shortest program describing the square
wave increase linearly with n, there is an equivalence between the two.

Is (2) a ‘true’ uncertainty relation? We can prove that the variables Δs and
ΔC in (2) are standard deviations of two measurable observables in suitable
probability spaces, see [11]. For Δs we consider the space of all real numbers
in the unit interval which are approximated to exactly s digits. Consider the
probability distribution Prob(v) = PC(v)/Ωs

C , where PC(x) =
∑

C(y)=x 2−|y|

and Ωs
C =

∑
|x|=s PC(x). For ΔC we consider

β = (ΔC(ω1ω2 . . . ωs))1/2 · (Prob(ω1ω2 . . . ωs))−1/2 · (1−Prob(ω1ω2 . . . ωs))−1/2,

and the same space but the random variable Y (ω1ω2 . . . ωs) = β and Y (v) = 0
if v �= ω1ω2 . . . ωs. Hence, the relation (2) becomes:

σX · σY = Δs ·ΔC(ω1ω2 . . . ωs) ≥ ε.

For example, it is possible to construct a special universal machine C = U0

satisfying the inequality Δs ·ΔU0(ω1 . . . ωs) ≥ 1, for which we have:

σX · σY ≥ 1.

The complexity-theoretic formulation of uncertainty has more “physical
meaning”, as shown in [11]. If the halting probability of the machine is com-
putable, then we can construct a quantum algorithm to produce a set of qubits
4 This is a disputable assumption. Bohm’s interpretation says there are real particles

with trajectories determined by a non-local equation, and the randomness is due to
our ignorance about the state of the rest of the universe. Penrose says that the wave
collapse is deterministic, but uncomputable and occurs when the difference between
superposed space-times gets too large. Fredkin, following a tradition that goes back
to Schrödinger and Einstein, says the wave collapse is computable and, probably,
just a simple pseudo-random function; we have no idea what the structure of space
is like at the Planck scale, which is only about 2−116 metres. Another view sees
the classical world as emerging from the collisional interactions of quantum particles
that inherently arise in “hot dense matter”. Collisions destroy the purity of otherwise
coherent states, so quantum randomness (as well as deterministic chaos) may be a
manifestation of the incompleteness of dynamical laws, cf. [41].

Algorithmic Randomness, Quantum Physics, and Incompleteness 7

whose state is described by the distribution. To illustrate, we consider a quantum
algorithm with two parameters, C and s, where C is a machine for which the
probability of producing each s-bit string is computable. We run the algorithm
to compute that distribution on a quantum computer with s output qubits; it
puts the output register into a superposition of spin states, where the proba-
bility of each state |v〉 is PC(v)/Ωs

C . Next, we apply the Hamiltonian operator
H = β|ω1 . . . ωs〉〈ω1 . . . ωs| to the prepared state. A measurement of energy will
give β with probability P = Prob(ω1ω2 . . . ωs) and zero with probability 1− P .
The expectation value for energy, therefore, is exactly the same as that of Y ,
but with units of energy, i.e.

ΔC(ω1ω2 . . . ωs)[J] ·Δs ≥ ε[J],

where [J] indicates Joules of energy.
Now define

Δt ≡
σQ

|d〈Q〉/dt|
,

where Q is any observable that does not commute with the Hamiltonian; that
is, Δt is the time it takes for the expectation value of Q to change by one
standard deviation. With this definition, the following is a form of Heisenberg’s
uncertainty principle:

ΔE ·Δt ≥ h̄/2.

We can replace ΔE by ΔC(ω1ω2 . . . ωs) by the analysis above; but what about
Δt? If we choose a time scale such that our two uncertainty relations are equiv-
alent for a single quantum system corresponding to a computer C and one value
of s, then the relation holds for C and any value of s:

ΔC(ω1ω2 . . . ωs)[J] ·Δs
h̄

2ε
[J−1 · Js] ≥ h̄

2
[Js].

In this sense, Heisenberg’s uncertainty relation is equivalent to (2).
The uncertainty principle now says that getting one more bit of ΩU requires

(asymptotically) twice as much energy. Note, however, that we have made an
arbitrary choice to identify energy with complexity. We could have chosen to
create a system in which the position of a particle corresponded to the complex-
ity, while momentum corresponded to the accuracy of C’s estimate of ΩU . In
that case, the uncertainty in the position would double for each extra bit. Any
observable can play either role, with a suitable choice of units.

If this were the only physical connection, one could argue that the result is
merely an analogy and nothing more. However, consider the following: let ρ be
the density matrix of a quantum state. Let R be a computable positive operator-
valued measure, defined on a finite-dimensional quantum system, whose elements
are each labelled by a finite binary string. Then the statistics of outcomes in
the quantum measurement is described by R: R(ω1 . . . ωs) is the measurement
outcome, and tr(ρR(ω1 . . . ωs)) is the probability of getting that outcome when
we measure ρ. Under these hypotheses, Tadaki’s inequality (1) (see [54], p. 2),

8 C.S. Calude

and the relation (2) imply the existence of a constant τ (depending upon R)
such that for all ρ and s we have:

Δs
. 1
tr(ρR(ω1 . . . ωs))

≥ τ.

In other words, there is no algorithm that, for all s, can produce an experimen-
tal set-up to produce a quantum state and a POVM (positive operator valued
measure) with which to measure the state such that the probability of getting
the result ω1ω2 . . . ωs is greater than τ/2s.

The above analysis is just one small step towards understanding the nature
of quantum randomness—more theoretical and experimental facts are needed.
One possible avenue of attack might be to experimentally test whether quantum
random bits satisfy some properties proven for algorithmic random strings. For
example, one such natural property states the existence of a constant c such that
for every n, the number of algorithmically random strings of length n is greater
than 2n−c.

4 Randomness and Computation

As we have seen, there is no such thing as “software generated” genuine ran-
domness. In John von Neumann’s words: “Anyone who considers arithmetical
methods of producing random digits is, of course, in a state of sin”. On the
other hand, randomness in quantum mechanics is hardly news. So what pre-
vented quantum physics from becoming a dominant source of randomness?

Basically, practical engineering considerations. Until recently, the only quan-
tum random number generators were based on the observation of radioactive
decay in an element like radium. The first book containing a million of quantum
random digits—generated by using radioactive decay from electronic vacuum
tubes—was published by the RAND Corporation in 1955, [47]. The basic ta-
ble was produced during May and June 1947; exhaustive tests found small but
statistically significant biases and adjustments were made. Some of the early
methods can be found in Golenko [28] who describes noise generators based on a
germanium triode, on a gas-discharge tube with magnet, on an electronic trigger
circuit with a switch in its anode supply (photograph in Fig. 44), on a gasotron
with magnet, and on subharmonic generators. But such generators are quite
bulky and the use of radioactive materials may cause health problems.

Fortunately, a beam of light offers an excellent alternative source of ran-
domness (see [32]). Light consists of elementary particles called photons; they
exhibit in certain situations a random behaviour. The transmission upon a semi-
transparent mirror is an example. A photon generated by a source beamed to
a semitransparent mirror is reflected or transmitted with 50 per cent chance
(see Fig. 1), and these measurements can be translated into a string of quantum
random bits. Such a device can be (and was) manufactured, and its functioning
can be monitored in order to confirm that is operating properly.

Algorithmic Randomness, Quantum Physics, and Incompleteness 9

Fig. 1. Optical system for generating quantum random bits

A spin-off company from the University of Geneva, id Quantique, [30], mar-
kets a quantum mechanical random number generator called Quantis, see Fig. 2.
Quantis is available as an OEM component which can be mounted on a plastic
circuit board or as a PCI card; it can supply a (theoretically, arbitrarily) long
string of quantum random bits sufficiently fast for cryptographic applications.5

Fig. 2. Quantis: OEM and PCI, cf. [31]

Plug these quantum random bits into a PC and we can, in theory at least,
leapfrog Turing’s barrier, that is we obtain a computing device with capability
surpassing that of classical Turing machines. Indeed, as we have already noticed,
no Turing machine can generate quantum random bits! So, the above statement
is true independently of whether quantum random bits are or not algorithmically
random.
5 id Quantique also supplies quantum random numbers over the internet [42], as well

as HotBits, [27], which generates them via radioactive decay.

10 C.S. Calude

Is this interesting? For some authors, the analysis of this type of ‘oracle’
machine is pointless and “one can only pity those engaged in this misguided
enterprise” (cf. [21], p. 207). As the reader arriving at this point can expect, I
do not share this view.

First, it seems that the computing device “PC plus a quantum generator
of random bits”, whose existence can be hardly doubted, is a serious threat
to the Church-Turing Thesis, which, in one variant, states that every effective
computation can be carried out by a Turing machine.

Secondly, understanding this device may help coping with complex computa-
tions. Here is a relevant example. Testing whether a number is prime—showing
that it has no factors beside itself and 1—is a crucial process in cryptography,
and although theoretically fast deterministic algorithms for primality testing
have been discovered (see [1]6), in practice they are quite slow and do not pose
any immediate risk to the security of electronic communication.

Probabilistic algorithms, first discovered in the mid 1970s, [43,46], can help
speed things up, but such probabilistic tests—which essentially use a coin-
flipping source of pseudo-random bits to search for a number’s factors—are only
“probably” correct.7 If you run the probabilistic algorithm using a source of al-
gorithmically random bits, however, it would not only be fast, it would also be
correct every single time (cf [17]). One of the principal tools used in computer
simulation, known as fast Monte-Carlo algorithms, can derive a similar benefit
from the use of algorithmically random numbers (cf. [12]; see more in [5]). It is
an open question whether these results are true for quantum random bits.

Of course, quantum random bits may be imperfect in a practical setting.
For example, as time goes on, the number of radioactive nuclei in a radioactive
substance decreases. A quantum binary random generator may be become biased
when the probability of one outcome is not equal to the probability of the other
outcome. It is however less of a problem than one might expect at first sight. Post-
processing algorithms can be used to remove bias from a sequence of quantum
random numbers affected by bias. The simplest unbiasing procedure was first
proposed by von Neumann [40].8 The bits of a sequence are grouped in strings
of two bits. The strings 00 and 11 are discarded; the string 01 is replaced by
0 and the string 10 is replaced by 1. After this procedure, the bias is removed
from the sequence. The cost of applying an unbiasing procedure to a sequence is
that it is shortened; in the case of von Neumann’s procedure, the length of the
unbiased sequence will be at most 25% of the length of the raw sequence. Other,
more efficient, unbiasing procedures exist. Peres [45] proved that the number of
bits produced by iterating von Neumann’s procedure is arbitrarily close to the
entropy bound.

6 The asymptotic time complexity of the algorithm is bounded by (log n)12q(log log n),
where q is some polynomial.

7 See [24] for pitfalls in using traditional pseudo-random number generation techniques
and [22] for Nescape error.

8 Unbiasing is a compression procedure.

Algorithmic Randomness, Quantum Physics, and Incompleteness 11

Thirdly, another open question is: Exactly how much more powerful a Turing
machine working with “an oracle of quantum random bits” can be? 9 This “ma-
chine” (which is different from the classical probabilistic Turing machine) can,
at any time of the computation, ask the “quantum oracle” to supply an arbitrar-
ily long (but finite) quantum random string. It won’t have access to an infinite
sequence, but (theoretically) to an unbounded finite set of quantum random bit
strings.10 Can this immense power be exploited? 11

A superficial attack suggests that it is unlikely that a Turing machine aug-
mented with a source of quantum random strings will be capable of solving the
Halting Problem: even stepping across the Turing barrier is no guarantee of be-
ing able to solve the Halting Problem. But what is the Halting Problem, and
why it is the “Philosopher’s Stone” of computer science?

The Halting Problem is the problem to decide whether an arbitrarily specified
Turing machine halts after a finite number of steps for a given input; the problem
cannot be solved by any Turing machine, as Turing proved in 1936! Solving this
problem would open a huge box of knowledge. For example, assume you want to
know whether every even number greater than 3 is the sum of two primes. We
can see that 4 = 2+2, 6 = 3+3, 8 = 3+5, and so on. In fact, this conjecture has
been verified computationally for numbers up to several billion. But is it true
for all natural numbers?

One can construct a Turing machine that generates the numbers 4, 6, 8, . . .
one after another and checks each of them to see whether it has the above
property or not. The machine stops when it finds the first number not having
the property; otherwise it continues on to the next number. Clearly, knowing
whether this machine stops or not answers the original question. Incidentally,
this question is one of the oldest unsolved problems in number theory, a question
formulated by Goldbach 262 years ago in a letter to Euler (see [37]). Many other
problems can be solved in a similar manner, including the famous Riemann
Hypothesis (see [19]), as Matiyasevich proved in [38], p. 121–122.12

All theoretical proposals for transcending the Turing barrier (see, for exam-
ple, [25,10,34]) have been challenged on grounds of physical in-feasibility (see
[21]): they require infinite time, infinite memory resources (or both), infinite
precision measurements, etc. It’s ironic that we now have a method that works
in the physical world, but one that seems difficult to justify mathematically be-
cause it rests on the assumption that quantum processes are genuinely random.

9 The idea of computing with deterministic chaos was investigated in [49,50].
10 The insight provided by the refutation (see [35,18]) of Bennett and Gill’s “Random

Oracle Hypothesis”, [3]—which basically states that the relationships between com-
plexity classes which hold for almost all relativized worlds must also hold in the
unrelativized case—suggests that random oracles are extremely powerful; contrast
this scenario with the behaviour of probabilistic primality tests run with algorith-
mically random bits, cf. [17].

11 Related results can be found in [2].
12 A rough estimation shows that solving the Goldbach Conjecture is equivalent to

deciding the halting status of a RAM program of less than 2,000 bits; for Riemann
Hypothesis the program will have about 10,000 bits.

12 C.S. Calude

The relation between the Riemann Hypothesis and quantum randomness seems
to be more profound (see [48] and [8], chapter 11). Maybe it’s not a random fact
that in both of them as well as in the fast Monte-Carlo simulation, primes play
a central role.

5 Complexity and Incompleteness

Gödel’s incompleteness theorem states that every finitely-specified consistent
theory which is strong enough to include arithmetic is either inconsistent, in-
complete or both. Zermelo-Fraenkel set theory with the Axiom of Choice (ZFC)
is such a theory.

Gödel’s original proof as well as most subsequent proofs are based on the
following idea: a theory which is consistent and strong enough can express state-
ments about provability within the theory, statements which are not provable
by the theory, but which through a proof by contradiction, turn out to be
true. This type of proof of incompleteness does not answer the questions of
whether independence (a true and unprovable statement is called independent)
is a widespread phenomenon nor which kinds of statements can be expected to
be independent.

Recall that we fixed the universal machine U and H denotes HU .
The first complexity-theoretic version of incompleteness was discovered by

Chaitin [13]:

Consider a consistent, sound, finitely-specified theory strong enough to
formalise arithmetic and denote by T its set of theorems. Then, there
exists a constant M , which depends upon U and T , such that whenever
the statement “H(x) > n” is in T we have n ≤M .

As the complexity H(s) is unbounded, each true statement of the form
“H(x) > m” with m > M (and, of course, there are infinitely many such state-
ments) is unprovable in the theory.

The high H-complexity of the statements “H(x) > m” with m > M is a
source of their unprovability. Is every true statement s with H(s) > M unprov-
able by the theory? Unfortunately, the answer is negative because only finitely
many statements s have complexity H(s) ≤ M in contrast with the fact that
the set of all theorems of the theory is infinite. For example, ZFC or Peano
Arithmetic trivially prove all statements of the form “n + 1 = 1 + n”, but the
H-complexity of the statement “n + 1 = 1 + n” grows unbounded with n. Can
the “heuristic principle” proposed by Chaitin in [14], p. 69, namely that “a set
of axioms of complexity N cannot yield a theorem of complexity substantially
greater than N”13 be rescued?

13 The best “approximation” of this principle supported by Chaitin’s proof in [13]
is that “one cannot prove, from a set of axioms, a theorem that is of greater H–
complexity than the axioms and know that one has done it”; see [14], p. 69.

Algorithmic Randomness, Quantum Physics, and Incompleteness 13

The answer is affirmative, but to obtain it we need to change again the
complexity measure, specifically, we work with the δ–complexity δ(x) = H(x)−
|x| instead of H(x).14 To quickly understand the difference between H and δ note
that the H-complexity of the statements “n+1 = 1+n” grows unbounded with
n, but the “intuitive complexities” of the statements “n + 1 = 1 + n” remain
bounded; this intuition is confirmed by δ–complexity. Of course, a statement
with a large δ–complexity has also a large H-complexity, but the converse is not
true.

We can now state the complexity-theoretic theorem obtained in Calude and
Jürgensen [7]:

Consider a consistent, sound, finitely-specified theory strong enough to
formalise arithmetic and denote by T its set of theorems. Then, there
exists a constant N , which depends upon U and T , such that T does
not contain any x with δ(x) > N , i.e., such an x is unprovable in the
theory.

The above theorem does not hold true for an arbitrary finitely-specified the-
ory and it is possible to have incomplete theories in which there are no high
δ–complexity statements.

Assume now that we have defined in some way the “set of true statements
representable in the theory”, a set which presumably includes all arithmetical
“true statements”. Then, the above theorem shows that any “true statement”
of δ–complexity higher than N is independent of the theory. On this base we
can show (see [7]) that, probabilistically, incompleteness is widespread, thus
complementing the result of Calude, Jürgensen, Zimand [9] stating that the set
of unprovable statements is topologically large:

Consider a consistent, sound, finitely-specified theory strong enough to
formalise arithmetic. The probability that a statement of length n is prov-
able in the theory tends to zero when n tends to infinity, while the prob-
ability that a sentence of length n is true is strictly positive.

Using either ∇ or δ we can re-obtain (for proofs see [11,7]) Chaitin’s incom-
pleteness result [13] for Omega:

Consider a consistent, sound, finitely-specified theory strong enough to
formalise arithmetic. Then, we can effectively compute a constant N
such that the theory cannot determine more than N scattered digits of
ΩU = 0.ω1ω2 . . .

The complexity-theoretic characterisation of the randomness of ΩU , recast as
a “formal uncertainty principle” in terms of the complexity ∇, implies Chaitin’s
information-theoretic version of incompleteness for ΩU . This shows that uncer-
tainty implies algorithmic randomness which, in turn, implies incompleteness.

14 It is easy to see that δ(x) ≈ log2 ∇(x) − |x|.

14 C.S. Calude

In terms of δ–complexity, high complexity is a source of incompleteness which
implies that probabilistically incompleteness is not artificial—it’s ubiquitous,
pervasive.

We can ask ourselves: How large is the constant N in the above theorem?
The answer depends on the chosen universal machine U . Indeed, in Calude [6]
one proves the following result:

Consider a consistent, sound, finitely-specified theory strong enough to
formalise arithmetic. Then, for each universal machine U we can effec-
tively construct a universal machine W such that ΩU = ΩW such that
the theory can determine at most the initial run of 1’s in the expansion
of ΩU = 0.11 . . .10

As soon as the first 0 appears, the theory becomes useless. If ΩV < 1/2, then
the binary expansion of ΩV starts with 0, and so we obtain Solovay’s theorem
[51]:

Consider a consistent, sound, finitely-specified theory strong enough to
formalise arithmetic. There effectively exists a universal machine V such
that the theory can determine no digit of ΩV .

We finally note that a Turing machine working with an “oracle of quantum
random bits” will outperform a standard Turing machine in generating mathe-
matical theorems from any given set of axioms. Still, even this machine cannot
generate all true statements of arithmetic.

6 Final Comments

Is the question “Why did the electron go through this slit instead of the other
one?”, as unanswerable as the question “Why the nth bit of ΩU is zero?”? This is
a difficult question and we don’t answer it; the paper brings some (pale) light into
this rather dark picture. Namely, we showed that uncertainty implies algorithmic
randomness which, in turn, implies incompleteness. For the machines C whose
halting probabilities ΩC are computable, one can construct a quantum computer
for which the uncertainty relation describes conjugate observables. Therefore, in
these particular instances, the uncertainty relation is equivalent to Heisenberg’s.

We have also argued that even in case quantum randomness is weaker than
algorithmic randomness, still the “Turing machine augmented with a source of
quantum random bits” is more powerful than any Turing machine. This suggests
a new attack on the Church-Turing Thesis, and the following interesting (from
both practical and theoretical points of view) open question: how much power has
this hybrid machine? Finally, we have showed that high algorithmic complexity
(in particular, algorithmic randomness) is a source of incompleteness, which is
pervasive because randomness is ubiquitous.

Algorithmic Randomness, Quantum Physics, and Incompleteness 15

Acknowledgment

I am much indebted to the chairs of the fourth edition of the conference “Ma-
chines, Computation and Universality”, Anatoly Beltiukov, Nikolai Kossovskii
and Maurice Margenstern, for their invitation to give this talk. I am very grate-
ful to John Casti, Greg Chaitin, Tien Kieu, David Oliver, Mike Stay, Karl Svozil
and Garry Tee for illuminating discussions.

References

1. M. Agrawal, N. Kayal, N. Saxena. PRIMES is in P, http://www.cse.iitk.ac.in/
primality.pdf, 6 August 2002.

2. E. Allender, H. Buhrman, M. Koucký. What can be efficiently reduced to the
Kolmogorov-random strings? Electronic Colloquium on Computational Complexity,
Report 44, 2004, 19 pp.

3. C. H. Bennett, J. Gill. Relative to a random oracle A, P A �= NP A �= co-NP A with
probability 1, SIAM Journal on Computing 10, 1(1981), 96–113.

4. D. J. Berkeland, D. A. Raymondson, V. M. Tassin. Tests for non-randomness in
quantum jumps, Los Alamos preprint archive, http://arxiv.org/abs/physics/
0304013, 2 April 2004.

5. C. S. Calude. Information and Randomness. An Algorithmic Perspective, Springer
Verlag, Berlin, 2nd Edition, Revised and Extended, 2002.

6. C. S. Calude. Chaitin Ω numbers, Solovay machines and incompleteness, Theoret.
Comput. Sci. 284 (2002), 269–277.

7. C. S. Calude, H. Jürgensen. Is Complexity a Source of Incompleteness?, CDMTCS
Research Report 241, 2004, 15 pp. Los Alamos preprint archive, http://arxiv.
org/abs/math.LO/0408144, 11 August 2004, 12 pp.

8. C. Calude, P. Hertling, B. Khoussainov. Do the zeros of Riemann’s zeta–function
form a random sequence ? Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 62 (1997),
199–207.

9. C. Calude, H. Jürgensen, M. Zimand. Is independence an exception? Appl. Math.
Comput. 66 (1994), 63–76.

10. C. S. Calude, B. Pavlov. Coins, quantum measurements, and Turing’s barrier,
Quantum Information Processing 1, 1–2 (2002), 107–127.

11. C. S. Calude, M. A. Stay. From Heinsenberg to Gödel via Chaitin, Interna-
tional Journal of Theoretical Physics, accepted. E-print as CDMTCS Research Re-
port 235, 2004, 15 pp. and Los Alamos preprint archive, http://arXiv:quant-ph
/0402197, 26 February 2004.

12. C. Calude, M. Zimand. A relation between correctness and randomness in the
computation of probabilistic algorithms, Internat. J. Comput. Math. 16 (1984),
47–53.

13. G. J. Chaitin. A theory of program size formally identical to information theory,
J. Assoc. Comput. Mach. 22 (1975), 329–340.

14. G. J. Chaitin. Information–Theoretic Incompleteness, World Scientific, Singapore,
1992.

15. G. J. Chaitin. Leibniz, Information, Math and Physics, http://www.cs.auckland.
ac.nz/CDMTCS/chaitin/kirchberg.html.

16. G. J. Chaitin. META MATH! The Quest for Omega, Pantheon Books, New York,
2005 (to appear).

16 C.S. Calude

17. G. J. Chaitin, J. T. Schwartz. A note on Monte-Carlo primality tests and algorith-
mic information theory, Comm. Pure Appl. Math. 31(1978), 521–527.

18. R. Chang, B. Chor, O. Goldreich, J. Hartmanis, J. Hastad, D. Ranjan, P. Rohatgi.
The random oracle hypothesis is false, J. Comput. System Sci. 49, 1 (1994), 24–39.

19. http://www.claymath.org/millennium/Riemann Hypothesis/.
20. M. Davis. The Universal Computer: The Road from Leibniz to Turing, Norton,

New York, 2000.
21. M. Davis. The myth of hypercomputation, in C. Teuscher (ed.). Alan Turing: Life

and Legacy of a Great Thinker, Springer-Verlag, Heidelberg, 2003, 195–211.
22. J-P. Delahaye. L’Intelligence and le Calcul, BELIN, Pour la Science, Paris, 2002.
23. R. Downey, D. Hirschfeldt. Algorithmic Randomness and Complexity, Springer-

Verlag, Heidelberg, 2005 (to appear).
24. D. E. Eastlake 3rd, S. Crocker, J. Schiller, Randomness Recommendations for Se-

curity, RFC 1750, December 1994, 30 pp.
25. G. Etesi, I. Németi. Non-Turing computations via Malament-Hogarth space-times,

International Journal of Theoretical Physics 41 (2002), 341-370.
26. R. P. Feynman. Simulating physics with computers, International Journal of The-

oretical Physics 21 (1982), 467–488.
27. http://www.fourmilab.ch/hotbits/.
28. D. I. Golenko. Generation of uniformly distributed random variables on electronic

computers, in Yu. A. Shreider (ed.), translated from Russian by G. J. Tee. The
Monte Carlo Method: The Method Statistical Trials, Pergamon Press, Oxford, 1966,
257–305.

29. W. Heisenberg. Über den Anschaulichen Inhalt der Quantentheoretischen Kine-
matik und Mechanik, Zeitschrift für Physik 43 (1927), 172–198. English translation
in J. A. Wheeler, H. Zurek (eds.). Quantum Theory and Measurement, Princeton
Univ. Press, Princeton, 1983, 62–84.

30. http://www.idquantique.com/.
31. http://www.idquantique.com/img/QuantisBoth.jpg.
32. T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, A. Zeilinger. A fast and

compact quantum random number generator, Rev. Sci. Instr. 71 (2000), 1675–
1680.

33. E. H. Kennard. Zur Quantenmechanik einfacher Bewegungstypen, Zeitschrift für
Physik 44 (1927), 326–352.

34. T. D. Kieu. Computing the non-computable, Contemporary Physics 44, 1 (2003),
51–71.

35. S. A. Kurtz. On the random oracle hypothesis, Information and Control 57, 1
(1983), 40–47.

36. G. W. Leibniz. Discours de métaphysique, Gallimard, Paris, 1995.
37. http://www.mathstat.dal.ca/~joerg/pic/g-letter.jpg.
38. Yu. V. Matiyasevich. Hilbert’s Tenth Problem, MIT Press, Cambridge, MA, 1993.
39. G. Milburn. The Feynman Processor. An Introduction to Quantum Computation,

Allen & Unwin, St. Leonards, 1998.
40. J. von Neumann. Various techniques used in connection with random digits, Na-

tional Bureau of Standards Applied Mathematics Series 12 (1951), 36–38.
41. D. Oliver. Email to C. Calude, 20 August 2004.
42. http://www.randomnumbers.info.
43. G. L. Miller. Riemann’s hypothesis and tests of primality, J. Comput. System Sci.

13 (1976), 300–317.
44. A. Peres. Quantum Theory: Concepts and Methods, Kluwer Academic Publishers,

Dordrecht, 1993.

Algorithmic Randomness, Quantum Physics, and Incompleteness 17

45. Y. Peres. Iterating von Neumann’s procedure for extracting random bits, Ann.
Stat. 20 (1992), 590–597.

46. M. O. Rabin. Probabilistic algorithms, in J. F. Traub (ed.). Algorithms and Com-
plexity, New Directions and Recent Results, Academic Press, New York, 1976, 21–
39.

47. A Million Random Digits with 100,000 Normal Deviates, The RAND Corpora-
tion, The Free Press, Glencoe, IL, 1955; online edition: http://www.rand.org/

publications/classics/randomdigits/.
48. M. du Sautoy. The Music of the Primes, HarperCollins, New York, 2003,
49. S. Sinha, W. L. Ditto. Dynamics based computation, Physical Letters Review 81,

10 (1998), 2156–2159.
50. S. Sinha, W. L. Ditto. Computing with distributed chaos, Physical Review E 60, 1

(1999), 363–377.
51. R. M. Solovay. A version of Ω for which ZFC can not predict a single bit, in

C. S. Calude, G. Păun (eds.). Finite Versus Infinite. Contributions to an Eternal
Dilemma, Springer-Verlag, London, 2000, 323–334.

52. K. Svozil. The quantum coin toss-testing microphysical undecidability, Physics
Letters A143, 433–437.

53. K. Svozil. Randomness & Undecidability in Physics, World Scientific, Singapore,
1993.

54. K. Tadaki. Upper bound by Kolmogorov complexity for the probability in com-
putable POVM measurement, Los Alamos preprint archive, http://arXiv:quant-
ph/0212071, 11 December 2002.

55. S. Wolfram. Statistical mechanics of cellular automata, Reviews of Modern Physics
55 (1983), 601–644.

56. S. Wolfram. A New Kind of Science, Wolfram Media, Champaign, IL, 2002.
57. U. Yurtsever. Quantum mechanics and algorithmic randomness, Complexity 6, 1

(2002), 27–31.

On the Complexity of Universal Programs

Alain Colmerauer

Laboratoire d’Informatique Fondamentale de Marseille,
CNRS et Universités de Provence et de la Méditerranée

Abstract. This paper provides a framework enabling to define and de-
termine the complexity of various universal programs U for various ma-
chines. The approach consists of first defining the complexity as the av-
erage number of instructions to be executed by U , when simulating the
execution of one instruction of a program P with input x.

To obtain a complexity that does not depend on P or x, we then intro-
duce the concept of an introspection coefficient expressing the average
number of instructions executed by U , for simulating the execution of one
of its own instructions. We show how to obtain this coefficient by comput-
ing a square matrix whose elements are numbers of executed instructions
when running selected parts of U on selected data. The coefficient then
becomes the greatest eigenvalue of the matrix.
We illustrate the approach using two examples of particularly efficient
universal programs: one for a three-symbol Turing Machine (blank sym-
bol not included) with an introspection coefficient of 3 672.98, the other
for an indirect addressing arithmetic machine with an introspection co-
efficient of 26.27.

1 Introduction

For the past several years I have been teaching an introductory course designed
to initiate undergraduate students to low level programming. My approach was
to start teaching them how to program Turing machines. The main exercise in
the course consisted of completing and testing a universal program whose archi-
tecture I provided. The results were disappointing, the universal program being
too slow for executing sizeable programs. Among others it was impossible to run
the machine on its own code, in the sense explained in section 4. In subsequent
years, I succeeded in designing considerably more efficient universal programs,
even though they became increasingly more complex. These improved programs
were capable to execute their own code in reasonable times. For simulating the
execution of one of its own instructions, the last program executes an average
number of 3 672.98 instructions, or more exactly its introspection coefficient – a
key concept introduced in this paper – is equal to 3 672.98.

This paper presents this result in a more general context concerning ma-
chines other then Turing machines. It is organized in 5 sections followed by an
appendix. The first constitutes this introduction and the last the conclusion.
Section 2 introduces the concepts of programmed machine, machine, program,

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 18–35, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Complexity of Universal Programs 19

transition and instruction. Section 3 illustrates those concepts on three exam-
ples: Turing machines, Turing machines with internal direction (a useful variant
of the previous machines), and an indirect addressing arithmetic machine. In
Section 4, the main component of this paper, it is shown how to check the ex-
istence of introspection coefficients and how to compute their values. The proof
of the theorem presented in that section is fairly lengthy. As most proofs it is
omitted by lack of space. A more complete version of the paper, with all proofs,
is under preparation. Sections 5 and 6 are devoted to two specially efficient uni-
versal programs: the first one, as already mentioned, for a Turing machine, the
second one for an indirect addressing arithmetic machine.

We are not aware of other work on the design of efficient universal programs.
Let us however mention the well known contributions of M. Minsky [1] and Y.
Rogozin [3] in the design of universal programs for Turing machines with very
small numbers of states. Surprisingly, they seem particularly inefficient in terms
of number of executed instructions.

2 Machines

2.1 Basic Definitions

Definition 1 A programmed machine is an ordered pair (M, P), whereM is a
machine and P a program forM.

Definition 2 A machine M is a 5-tuple (Σ,C, α, ω, I), where

Σ, the alphabet ofM, is a finite not empty set;
C, is a set, generally infinite, of configurations; the ordered pairs (c, c′) of ele-

ments of C are called transitions ;
α, the input function, maps each element x of Σ� to a configuration α(x);
ω, the ouput function, maps each configuration c to an element ω(c) of Σ�;
I, is a countable set of instructions, an intruction being a set of compatibles

transitions, i.e., whose first components are all distinct.

Definition 3 A program P for a machineM is a finite subset of the instructions
set I ofM, such that the transitions of

⋃
P are compatible.1A configuration c

ofM is final for P , if there exists no transition of
⋃
P starting with c.

2.2 How a Machine Operates

Let M = (Σ,C, α, ω, I) be a machine and P a program for M. The operation
of the machine (M, P) is explained by the diagram:

x y
↓ ↑
c0 −→ c1 −→ c2 · · · cn−1 −→ cn

1 P being a set of sets
⋃

P denotes the set of elements which are member of at least
one element of P and thus the set of transitions involved in program P .

20 A. Colmerauer

and more precisely by the definition of the following functions2, where x is a
word on Σ and c, c′ configurations of C:

orbitM(P, x) =
{

the longest sequence c0, c1, c2, . . . with
c0 = α(x) and each (ci, ci+1) an element of

⋃
P .

outM(P, x) =

{
↗, if orbit(P, x) is infinite,

ω(cn), if orbit(P, x) ends with cn

and, for dealing with complexity,

trackM(P, c, c′)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
the shortest sequence of the form
(c0, c1) (c1, c2) (c2, c3) . . . (cn−1, cn),
with c = c0, each (ci, ci+1) ∈

⋃
P , cn = c′, if it exists,

↗, if this shortest sequence does not exist,

trackM(P, x) =

⎧⎨⎩
the longest sequence of the form
(c0, c1) (c1, c2) (c2, c3) . . .
with orbit(P, x) = c0, c1, c2,

costM(P, x) =

{
∞, if track(P, x) is infinite,

|track(P, x)|, if track(P, x) is finite,

where |track(P, x)| denotes the length of the finite sequence track(P, x).

2.3 Simulation of a Machine by Another

LetM1 andM2 be two machines of same alphabet Σ and let P1 and P2 be the
sets of their programs.

Definition 4 Two programmed machines of the form (M1, P1) and (M2, P2)
are equivalent if, for all x ∈ Σ�,

outM1(P1, x) = outM2(P2, x),
costM1(P1, x) = costM2(P2, x).

Definition 5 The program transformation f1 : P1 → P2 simulates M1 onM2

if, for all P1 ∈ P1, the programmed machines (M1, P1) and (M2, f1(P1)) are
equivalent.

2 Index M is omitted when there is no ambiguity.

On the Complexity of Universal Programs 21

3 Examples of Machines

3.1 Turing Machines

Informally these are classical Turing machines with a bi-infinite tape and in-
structions written [qi, abd, qj], with d = L or d = R, meaning : if the machine
is in state qi and the symbol read by the read-write head is a, the machine re-
places a by b, then moves its head one symbol to the left or the right, depending
whether d = L or d = R, and change its state to qj . Initially the entire tape
is filled with blanks except for a finite portion which contains the initial input,
the read-write head being positioned on the symbol which precedes this input.
When there are no more instructions to be executed the machine output the
longest word which contains no blank symbols and which starts just after the
position of the read-write head.

Formally one first introduces an infinite countable set {q1, q2, . . .} of states
and a special symbol u, the blank. For any alphabet word x on an alphabet of
the form Σ ∪ {u}, one writes ·x for x, with all its beginning blanks erased, and
x· for x, with all its ending blanks erased.

Definition 6 A Turing machine has a 5-tuple of the form (Σ,C, α, ω, I) where,

– Σ �= Σu, with Σu = Σ ∪ {u},
– C is the set of 4-tuples of the form [qi, ·x, a, y·], with qi being any state, x, y

taken from Σ�
u and a taken from Σu,

– α(x) = [q1, ε, u, x], for all x ∈ Σ�,
– ω([qi, ·x, a, y·]) is the longest element of Σ� beginning y·,
– I is the set of instructions denoted and defined, for all sates qi, qj and ele-

ments a, b of Σu, by

[qi, abL, qj]
def= {([qi, ·xc, a, y·], [qj , ·x, c, by·]) | (x, c, y) ∈ E},

[qi, abR, qj]
def= {([qi, ·x, a, cy·], [qj , ·xb, c, y·]) | (x, c, y) ∈ E},

with E = Σ�
u ×Σu ×Σ�

u.

3.2 Turing Machines with Internal Direction

These are a variant of the above described Turing machines with an internal
moving head direction whose initial value is equal to left-right. The instructions
are written [qi, abs, qj], with s = + or s = −, meaning : if the machine is in
state qi and the symbol read by the read-write head is a, the machine replaces
a by b, keeps its internal direction or changes it depending whether s = + or
s = −, moves its read-write head one symbol in the new internal direction, and
changes its states to qj .

Formally we get:

Definition 7 A Turing machine with internal direction has a 5-tuple of the
form (Σ,C, α, ω, I) where,

– Σ �= Σu, with Σu = Σ ∪ {u},
– C is the set of 5-tuples of the form [d, qi, ·x, a, y·], with d ∈ {L,R}, qi being

a state, x, y taken from Σ�
u and a taken from Σu,

22 A. Colmerauer

– α(x) = [R, q1, ε, u, x], for all x ∈ Σ�,
– ω([d, qi, ·x, a, y·]) is the longest element of Σ� beginning y·,
– I is the set of instruction denoted and defined, for all states qi, qj , all elements

a, b of Σu and all s ∈ {+,−}, by

[qi, abs, qj]
def=

{([d, qi, ·xc, a, y·], [L, qj , ·x, c, by·]) | (d, s) ∈ E1 and (x, c, y) ∈ F}}∪
{([d, qi, ·x, a, cy·], [R, qj , ·xb, c, y·]) | (d, s) ∈ E2 and (x, c, y) ∈ F},
with E1 = {(L,+), (R,−)}, E2 = {(R,+), (L,−)} and F = Σ�

u ×Σu ×Σ�
u.

3.3 Relationship Between the Two Types of Turing Machines

Let M1 and M2 be machines of same alphabet Σ, the first one of type Turing
and the second one of type Turing with internal direction, and let P1 and P2

denote the sets of their programs. As we will see, there exists a strong relation
between these two types of machines. First it can be shown that:

Property 1 The program transformations g1 : P1 → P2 and g2 : P2 → P1,
defined below, simulate M1 on M2 and M2 on M1:

g1(P1)
def
= {[q2i−h, abd, q2j−k] | [qi, abs, qj] ∈ P ′ and (h, k, d, s) ∈ E},

g2(P2)
def
= {[q2i−h, abs, q2j−k] | [qi, abd, qj] ∈ P and (h, k, s, d) ∈ E},

with

E =
{

(1, 1, +, R)
(1, 0, −, L)

}
∪
{

(0, 1, −, R)
(0, 0, +, L)

}
.

Let us now introduce the following concepts concerning a program P� for
M�, with � = 1 or � = 2.

Definition 8 A state qi is reachable in P�, if i = 1 or if there exists a subset of
P� of the form

{[qk0 , a1b1e1, qk1], [qk1 , a2b2e2, qk2], . . . , [qkm−1 , ambmem, qkm]},

with k0 = 1 ank km = i, the ai’s and bi’s being taken from Σ and the ei’s being
taken from {L,R} or {+,−}, depending on whether � = 1 or � = 2.

Definition 9 For all subsets of P� of the form

{[qk0 , a1b1e1, qk1], [qk1 , a2b2e2, qk2], . . . , [qkm−1 , ambmem, qkm]},

with the ai’s and bi’s taken from Σ and the ei’s from {L,R} or {+,−}, depending
whether � = 1 or � = 2, the sequence of 3-tuples a1b1e1, a2b2e2, . . . , ambmem is
called a potential effect of state qk0 . Two states occurring in P which have the
same set of potential effects are said to be mergeable.

On the Complexity of Universal Programs 23

Definitions 10

– reachable(P�) denotes the set of instructions of P� involving reachable states
of P�,

– merged(P�) denotes the program obtained by replacing in P , and in parallel,
every occurrence of a state qi by the state qj of smallest index such that qi

and qj are mergeable,
– compact(P�) denotes the program obtained by renaming each state qi of P�

by qi′ in such a way that the integers i′ are as small as possible and that
i < j entails i′ < j′,

– clean(P�) = compact(reachable(merged(P�))).

One proves that for � = 1 and � = 2:

Property 2 The programmed machines (M�, clean(P�)) and (M�, P�) are eq-
uivalent.

One also proves that:

Theorem 1 The program transformations f1 : P1 → P2 and f2 : P2 → P1,
defined by f = clean ◦g�, with g� defined in Property 1, simulateM1 onM2 and
M2 onM1 and are such that f2◦f1◦f2◦f1 = f2◦f1 and f1◦f2◦f1◦f2 = f1◦f2.

3.4 Indirect Addressing Arithmetic Machine

This is a machine with an infinity of registers r0, r1, r2, Each register con-
tains an unbounded natural integer. Each instruction starts with a number and
the machine always executes the instruction whose number is contained in r0
and, except in one case, increases r0 by 1. There are five types of instructions:
assigning a constant to a register, addition and subtraction of a register to/from
another, two types of indirect assignment of a register to another and zero-testing
of a register content.

More precisely and in accordance with our definition of a machine:

Definition 11 An indirect addressing arithmetic machine has a 5-tuple of the
form (Σ,C, α, ω, I), where,

– Σ = {c1, . . . , cm},
– C is the set of infinite sequences r = (r0, r1, r2, . . .) of natural integers,
– α(a1 . . . an) = (0, 25, 1, . . . , 1, r24+1, . . . , r24+n, 0, 0, . . .), with r24+i equal to

1, . . . ,m depending whether ai equals c1, . . . , cm,
– ω(r0, r1, . . .) = a1 . . . an, with ai equal to c1, . . . , cm depending whether rr1+i

equals 1, . . . ,m, and n being is the greatest integer such that rr1 , . . . , rr1+n

are elements of {1, . . . ,m},
– I is the set of instructions denoted and defined, for all natural integers i, j, k,

by:

24 A. Colmerauer

[i, cst , j, k] def= {(r, s′) ∈ C2 | r0 = 1, sj = k and si = ri elsewhere},

[i, plus , j, k] def= {(r, s′) ∈ C2 | r0 = 1, sj = rj +rk and si = ri elsewhere},

[i, sub, j, k] def= {(r, s′) ∈ C2 | r0 = 1, sj = rj÷rk and si = ri elsewhere},

[i, from , j, k] def= {(r, s′) ∈ C2 | r0 = 1, sj = rrk
and si = ri elsewhere},

[i, to, j, k] def= {(r, s′) ∈ C2 | r0 = 1, srj = rk and si = ri elsewhere},

[i, ifze, j, k] def= {(r, s′) ∈ C2 | r0 = 1, s0 =
{
rk, if rj = 0,
r0, if rj �= 0 and si = ri elw.},

with s′ equal to s except that s′0 = s0 + 1 and with rj÷rk = max{0, rj−rk}.

4 Universal Programs and Codings

4.1 Introduction

Let M = (Σ,C, α, ω, I) be a machine and let us code each program P for M
by a word code(P) on Σ.

Definition 12 The pair (U, code), the program U and the coding function code,
are said to be universal forM, if, for all programs P ofM and for all x ∈ Σ�,

out(U, code(P) · x) = out(P, x) . (1)

If in the above formula we replace P by U , and x by code(U)n · x we obtain:

out(U, code(U)n+1 · x) = out(U, code(U)n · x)

and thus:

Property 3 If (U, code) is a universal pair, then for all n ≥ 0 and x ∈ Σ�,

out(U, code(U)n · x) = out(U, x) . (2)

4.2 Complexity and Introspection Coefficient

Let (U, code) be a universal pair for the machine M = (Σ,C, α, ω, I). The
complexity of this pair is the average number of transitions performed by U for
producing the same effect as a transition of the program P occurring in the input
of U . More precisely:

Definition 13 Given a program P forM and a word x on Σ with cost(P, x) �=
∞, the complexity of (U, code) is the real number denoted and defined by

λ(P, x) =
cost(U, code(P) · x)

cost(P, x)
.

On the Complexity of Universal Programs 25

The disavantage of this definition is that the complexity depends on the input
of U . For an intrinsic complexity, independ of the input of U , we introduce the
introspection coefficient of (U, code) whose definition is justified by Property 2:

Definition 14 If for all x ∈ Σ�, with cost(U, x) �=∞, the real number

lim
n→∞ λ(U, code(U)n · x) = lim

n→∞
cost(U, code(U)n+1 · x)
cost(U, code(U)n · x)

exists and does not depend on x, then this real number is the introspection
coefficient of the universal pair (U, code).

4.3 Keeping the Same Complexity and Introspection Coefficient

LetM1 andM2 be two machines, with same alphabet Σ, let P1 and P2 be the
sets of their programms, let f1 : P1 → P2 and f2 : P2 → P1 be to program
transformation and let (U2, code2) be a universal pair for M2. Let us make the
following hypothesis:

Hypothesis 1 The transformation f1 simulatesM1 onM2, the transformation
f2 simulates M2 on M1 and code2 ◦ f1 ◦ f2 = code2.

From Theorem 1 at page 23 it follows:

Property 4 In the particular case where M1 is a Turing machine and M2 a
Turing with internal direction, Hypothesis 1 is satisfied by taking the transfor-
mations f1 and f2 of Theorem 1 and by taking code2 of the form code ′

2 ◦ f1 ◦ f2,
with code ′

2 a mapping of type P2 → Σ�.

For the sequel, let x, P1, P2 respectivley denote an element of Σ�,P1,P2. We
have the following property:

Property 5 With Hypothesis 1 and if P1 = f2(P2) or P2 = f1(P1), the pair
(U1, code1), with U1 = f2(U2) and code1 = code2 ◦ f1,

1. is universal for M1,
2. has a complexity λ1(P1, x), undefined or equal to the complexity λ2(P2, x) of

the pair (U2, code2), depending whether the real number λ2(P2, x) is unde-
fined or defined,3

3. admits the same introspection coefficient as (U2, code2) or does not admit an
introspection coefficient, depending whether (U2, code2) admits or does not
admit one,

4. is such that code1(P1) = code2(P2).

3 Of course λi(Pi, x) =
costMi

(Ui, codei(Pi)·x)

costMi
(Pi, x)

.

26 A. Colmerauer

Proof Let us first prove claim 4. If P2 = f1(P1), since code1 = code2 ◦ f1, we
have

code1(P1) = code2(f1(P1)) = code(P2).

If P1 = f2(P2), since code2 = code2 ◦ f1 ◦ f2 and code2 ◦ f1 = code1, we have
code2 = code1 ◦ f2 and thus

code2(P2) = code1(f2(P2)) = code1(P1).

Claim 1 is proven by the equalities below, where Q1 is any element of P1 :

outM1(Q1, x) = (since f1 simulatesM1 on M2)
outM2(f1(Q1), x) = (since (U2, code2) is universal forM2)
outM2(U2, code2(f1(Q1))·x) = (since f2 simulatesM2 on M1)
outM1(f2(U2), code2(f1(Q1))·x) = (since f2(U2) = U1 and code2 ◦ f1 = code1)
outM1(U1, code1(Q1)·x).

Claim 2 is proven by showing the equality of pairs[
costM1(U1, code1(P1) · x)
costM1(P1, x)

]
=
[
costM2(U2, code2(P2) · x)
costM2(P2, x)

]
. (3)

First of all,

costM1(U1, code1(P1)·x) = (since U1 = f2(U2), code1(P1) = code2(P2))
costM1(f2(U2), code2(P2)·x) = (since f2 simulatesM2 onM1)
costM2(U2, code2(P2)·x).

Secondly, since f2 simulatesM2 on M1, if P1 = f2(P2), and since f2 simulates
M1 onM2, if P1 = f2(P2), we have

costM1(P1, x) = costM2(P2, x).

Finally claim 3 is proven by the sequence of equalities:[
costM1(U1, code1(U1) · code1(U1)

n · x)
costM1(U1, code1(U1)

n · x)

]
= (by replacing P1 by U1 and

x by code1(U1)n · x in (3))[
costM2(U2, code2(U2) · code1(U1)

n · x)
costM1(U2, code1(U1)

n · x)

]
= (since code1(U1) = code2(U2))[

costM2(U2, code2(U2) · code2(U2)
n · x)

costM2(U2, code2(U2)
n · x)

]
.

This completes the proof.

4.4 Existence and Value of the Introspection Coefficient

Let (U, code) be a universal pair for a machineM = (Σ,C, α, ω, I). Given a word
x on Σ, we assume that the computation of the word y by y = out(U, x) can be

On the Complexity of Universal Programs 27

synchronized with the computation of the same word y by y = out(U, code(U) ·
x), according to the following diagram:

x y
↓ ↑

code(U)·x •
1−−−−→• 2−−−−→• 2−−−−→• 1−−−−→• 3−−−−→• y

↓ ↓ ↓ ↓ ↓ ↓ ↘ ↑
• 1→ 1→ 4→• 3→ 1→ • 2→ 3→ 3→• 2→ 3→ 3→• 3→ 1→ • 3→ 3→ 1→ 5→ 5→ •

More precisely we make the hypothesis:

Hypothesis 2 There exists

– a synchronization function Φ : CU → CU , with Φ(c) final for U when c is
final for U ,

– a labelling function μ : (
⋃
U)� → (1..n)� with n a positive integer and μ being

surjective, such that μ(t1 . . . tk) = μ(t1) . . . μ(tk), for all t1 . . . tk ∈ (
⋃
U)�,

– an initial sequence of labels δ ∈ (1..n)�, independent of x, such that

δ = μ(track(U, α(code(U)·x), Φ(α(x)))), for all x ∈ Σ�,

– a label rewriting ϕ : 1..n→ (1..n)� such that, for all (c, c′) ∈
⋃
U ,

ϕ(μ(c, c′)) = μ(track(U, Φ(c), Φ(c′))).

We then introduce the column vector B and the square matrix A:

B =

⎡⎢⎣b1...
bn

⎤⎥⎦ , bi = number of occurrences of i in δ,

A =

⎡⎢⎣a11 · · · ann

...
...

a1n· · · ann

⎤⎥⎦ , aij = number of occurrences of i in ϕ(j).

(4)

and we conclude by the main theorem of the paper:

Theorem 2 If the matrix A admits a real eigenvalue λ, whose multiplicity is
equal to 1 and whose value is strictly greater than 1 and strictly greater then the
absolute value λ′ of the other eigenvalues of A then:

– the limit matrix Ā = limn→∞(1
λA)n exists and has at least one non-zero

element,
– if ||ĀB|| �= 0, the introspection coefficient of U exists and is equal to λ,
– if � is a real number such that λ′ < � < λ and the Xi’s column vectors defined

by X0 = B and Xn+1 = 1
�AXn, then, when n→∞,

||Xn|| →
{

0, if ||ĀB|| = 0,

∞, if ||ĀB|| �= 0.

Here ||X || denotes the sum of the components of X .

28 A. Colmerauer

5 Our Universals Pairs for the Two Types of Turing
Machines

5.1 Introduction

We now present two particularly efficient universal pairs, (U1, code1), (U2, code2),
one for the Turing machine M1 with alphabet Σ = {o, i, z} and the other for
the Turing machine with internal directionM2 and same alphabet Σ.

The pair (U1, code1) is built from the pair (U2, code2) by taking U1 = f2(U2)
and code1 = code2 ◦ f1, where f1 and f2 are the program transformations intro-
duced in Theorem 1 at page 23. Since code2 will be of the form code ′

2 ◦ f1 ◦ f2,
according to Properties 4 and 5, the pair (U1, code1) is indeed universal forM1

and has the same complexity properties as the pair (U2, code2).
Let us mention that U1 has 361 instructions and 106 states while U1 has only

184 instructions and 54 states. It remains to present the pair (U2, code2).

5.2 Coding Function of the Universal Pair (U2, code2)

In order to assign a position to each instruction [qi, abs, qj] of a program forM2,
we first introduce the numbers:

π(i, a) = 4(i− 1) +

⎧⎪⎪⎨⎪⎪⎩
1, if a = u
2, if a = o
3, if a = i
4, if a = z

, π(i) = 1
2 (f(i, o) + f(i, i)),

defined for any positive integer i and any symbol a ∈ {u, o, i, z}. Then let P2

be a program for M2 and let P ′
2 = f1(f2(P2)). We take code2(P2) = code ′

2(P
′
2),

with code ′
2(P ′

2) the word on {o, i, z}

zI4nz . . . zIk+1zIkzIk−1z . . . zI1zoi . . . izz,

where n is the number of states of P ′
2, where the size of the shuttle oi . . . iz

is equal to the longest size of the Ik’s minus 5, and where, for all a ∈ Σu and
i ∈ 1..n,

Iπ(i,a) =

{
[qi, abs, qj], if there exists b, s, j with [qi, abs, qj] ∈ P ′

2,

oi, otherwise,

with,

[qi, a, b, s, qj] =

{
iam . . . a2o, if π(j)− h(i, a) > 0,

oa2 . . . ami, if π(j)− h(i, a) < 0,

with a2a3 equal to io, oi, ii, depending whether b equals u, o, i, z, with a4 = o
or a4 = i depending whether s = + or s = − and with iam . . . a5 a binary
number (o for 0 and i for 1) whose value is equal to |π(j)− π(i, a)|+ 3

2 .

On the Complexity of Universal Programs 29

5.3 Operation of the Universal Pair (U2, code2)

As already mentioned, the program U2 has 54 states, q1, . . . , q54, and 184 instruc-
tions. These instructions are divided in 10 modules A,B,C, . . . , J organized as
follows:

I
N
S
T
R
U
C
T
I
O
N

L
O
C
A
L
I
Z
A
T
I
O
N

I
N
S
T
R
U
C
T
I
O
N

E
X
E
C
U
T
I
O
N

0 1

2

3

5
4

6

7

8 9A Start

B Shuttle
direction
updating

C Shuttle
counter

initialization

D Writing,
moving,
reading

E Shuttle
counter
updating

F Moving
shuttle

to next z

G Shuttle
counter

decreasing

H Shuttle
reversing

I Instruc-
tion orien
tation test

J End

The numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 denote respectively the states q1, q24, q35,
q43, q49, q15, q13, q7, q10, q23. The complete program U2 is given in the appendix
as a graph whose vertices are the states and the edges the instructions of U2:
each instruction [qi, abs, qj] is represented by an arrow, labeled abs, going from
qi to qj . Note that the vertices a, b, c and 7 have two occurrences which must
be merged.

Initial Configurations Initially the machines executing P2 is in the configu-
ration

· · · uu
↑
R q1 P2

x uu · · ·

and the machine executing u2 is in the correponding initial configuration
code(P)︷ ︸︸ ︷

. . . uu
↑
R q1 P2

zI4nz . . . zIk+1zIkzIk−1z . . . zI1zoi . . . izz x uu . . .︸ ︷︷ ︸
shuttle

While the machine executing P2 performs no transitions, the machine executing
U2 performs a sequence of initial transitions, always the same, involving the
instructions of module A and some instructions already there in the modules
I,H,G, F . Then the machines executing P2 and U2 end up respectively in the
following current configurations with k = 1:

30 A. Colmerauer

Current Configurations While the machine excuting P2 is in the current
configuration

v a
↑
d qi P2

w

the machine executing U2 is in the corresponding current configuration

standard shuttle︷ ︸︸ ︷
v uzzI4nz . . . zIk+1z

↑
L q24 U2

Ikzd
′u . . . uzIk−1z . . . zI1zu w

(5)

or
reversed shuttle︷ ︸︸ ︷

v uzzI4nz · · · zIk+1zu . . . ud
′z
↑
R q22 U2

IkzIk−1z · · · zI1zu w

(6)

depending whether Ik, with k = π(i, a), is in the standard form iam . . . a2o or
in the reversed form iam . . . a2o. The read-write points to a3 or to the z which
follows Ik when Ik is the empty instruction oi. Depending whether d is equal to
L or R, the symbol d′ is equal to u or o, if Ik is standard, and to o or u, if Ik is
reversed.

While the current configuration of P2 is not final, P2 performs one transition
for reaching the next current configuration and U2 performs a sequence of transi-
tions for reaching the next corresponding current configuration. More precisely,
using the information contained in Ik, the program U2

– updates the internal direction contained in the shuttle (module B),
– transfers in the shuttle the binary number serving as basis for computing the

number of instructions to be jumped toward the left or the right, depending
on whether the shuttle is standard or reversed (module C),

– simulates the writing of a symbol, the read-write head move, and then the
reading of a new symbol (module D),

– taking into account the read symbol, updates the binary number contained in
the shuttle in order to obtain the right number of instructions to be jumped
by the shuttle for reaching the next instruction to be executed (module E),

– moves the shuttle and eventually reverses it, for correctly positioning it
alongside the next instruction to be executed (modules F,G,H, I).

When the current configuration of P2 becomes final, the corresponding current
configuration of U2 is of the form (6) with Ik equal to the empty instruction
oi. Then U2 performs a sequence of transitions (module J) for reaching the
final corresponding configurations. The machines executing P2 and U2 end up
respectively in the following final configurations:

On the Complexity of Universal Programs 31

Final Configurations While the machine executing P2 terminates in the final
configuration

b
↑
d qm P2

y u

the machine executing U2 terminates in the corresponding final configuration

uzzI4nz · · · zIk+1zu . . . ud
′zIkzIk−1z · · · zI1zu

↑
D q23 U2

y u

with Ik = oi, k = π(m, b) and d′ equal to o or u, depending whether d equals L
or R.

6 Complexity and Introspection Coefficient of Our Two
Pairs

6.1 General Complexity

Let P2 be any program for M2. From the way the coding function code2 is
defined, for � = 2,

|code�(P�)| = O(n log n) ,

where n is the number of states of clean(P�). This result also holds for � = 1, with
P1 being any program forM1, the classical Turing mchine with same alphabet
as M2. This is due to the fact that code1(P1) = code2(f1(P1)) and that the
number of instructions of clean(f1(P1)) is at most equal to twice the number of
instructions of P1.

Returning to the way U2 operates at section 5.3, we conclude that if P2

performs h transitions then there exists positive integers ki indepent of h or n
such that U2 performs at most:

– k1 log2 n transitions for reaching the first configuration corresponding to the
initial configuration of P2,

– hk1 log2 n transitions for transferring information from an instruction Ii to
the adjacent shuttle,

– hk2n logn transitions for simulating the writing of a symbol, the move of the
head and the reading of a symbol,

– hk3n log2 n transitions for moving the shuttle,
– hk4n log2 n transitions for reaching a final configuration from a configuration

corresponding to a final configuration of P2,

that is all together, at most hk5n log2 n transitions.
Thus for � = 2, there exists a positive real number k, independent of x ∈ Σ�,

such that
λ�(P�, x) ≤ n log2 n

32 A. Colmerauer

If instead of measuring the complexity in terms of n we do it in terms of m =
|code�(P�)|, we conclude that there exists a positive real number k, independent
of x ∈ Σ�, such that

λ�(P�, x) ≤ m logm

These two results also hold also for � = 1, with P1 being any program forM1.

6.2 Complexity on Examples

On particular examples we have obtained the following complexity results for
the pairs (U�, code�), with � = 1 and � = 2,

x
cost(
P�, x)

cost(U�,
code�(P�)·x)

cost(U�, code�(U�)·
code�(P�)·x) λ�(P�, x) λ�(U�,

code�(P�)·x)
ε 2 5 927 22 974 203 2 963.50 3 876.19
o 6 13 335 51 436 123 2 222.50 3 857.23
oi 12 23 095 88 887 191 1 924.58 3 848.76
oiz 20 35 377 136 067 693 1 768.85 3 846.22
oizo 30 49 663 190 667 285 1 655.43 3 839.22

Here P�, with P1 = f2(P2), is a reversing program such that, for all n ≥, one
gets out(P�, a1a2 . . . an) = an . . . a2a1, with the ai’s taken from {o, i, z}. In both
cases, � = 1 and � = 2, the program P� has 32 instructions and 9 states. We have
|code�(P�)| = 265 and |code�(U�)| = 1552.

6.3 Introspection Coefficient

To satisfy Hypothesis 2, code2(U2) = f1(f2(code2(U2))) and the labelling func-
tion μ is defined so that, for all transitions (c1, c2) and (c′1, c

′
2) of

⋃
U2 the

integers μ(c1, c2) and μ(c′1, c2′) are equal if and only if all the conditions below
are satisfied:

– the states of c1 and c′1 are equal,
– the symbols pointed by the read-write heads in c1 and c′1 are equal,
– the symbols pointed by the read-write heads in c2 and c′2 are equal,
– the directions in c2 and c′2 are the same.

The function Φ is defined, for all configuration of U2, with P2 = U2 by,

Φ(c) =

{
current configuration corresponding to c, if c is not final for P2,

final configuration corresponding to c, if c is final for P2.

After having computed the column vector B and the matrix A, using Theo-
rem 2, we have verified that U2 admits an introspect coefficient and computed
its value: for � = 2 and all words x on Σ such that cost(P, x) �=∞,

lim
n→∞

cost(U�, code�(U�)n+1 ·x)
cost(U�, code(U�)n ·x)

= 3 672.98

This result also holds for � = 1.

On the Complexity of Universal Programs 33

7 Our Universal Program for the Indirect Addressing
Arithmetic Machine

It is interesting to compare the complexities of our universal program for a Turing
machine with the complexity of a universal program for the indirect addressing
arithmetic machine with same alphabet Σ = {c1, c2, c3}, with c1 = o, c2 = i
and c3 = z.

We have written such a universal program U3 using 103 instructions. From
the operation of our universal pair (U3, code3) we have been able to show that:

Property 6 There exists a positive number k such that, for all programs P3 and
word x on Σ, with cost(P3, x) �=∞,

λ3(P3, x) =
cost(U3, code3(P3) · x)

cost(P3, x)
≤ 35 + k

|code(P)|
cost(P3, x)

Thus the size of the program P3 becomes irrelevant when a large number of
transitions is performed. On particular examples we have obtained the following
results:

x
cost(
P3, x)

cost(U3,
code3(P3)·x)

cost(U3, code3(U3)·
code3(P3)·x) λ3(P3, x) λ3(U3,

code3(P3)·x)
ε 12 2 372 72 110 197, 66 30, 40
o 16 2 473 74 758 154, 56 30, 23
oi 31 2 860 84 916 92, 26 29, 69
oiz 35 2 961 87 564 84, 60 29, 57
oizo 50 3 348 97 722 66, 96 29, 19

where P3 is a reversing program of 21 instructions such that, for all n ≥ 0
one obtains out(P, a1a2 . . . an) = an . . . a2a1, with the ai’s taken from {o, i, z}.
Additionally, |code3(P3)| = 216 and |code3(U3)| = 1042.

The introspection coefficient obtained is:

lim
n→∞

cost(U3, code(U3)n+1 ·x)
cost(U3, code(U3)n · x)

= 26.27

8 Conclusion

Unless one “cheats”, it is difficult to improve the introspection coefficient of
our universal Turing machine which took us considerable development effort.
Suppose, which is the case, that we have at our disposal a first universal pair
(U, code) for a Turing machine.

A first way of cheating consists of constructing the pair (U, code ′) from the
universal pair (U, code), with

code ′(P) =
{
ε, if P = U ,
code(P), if P �= U .

34 A. Colmerauer

Then we have
cost(U ′, code(U ′)n+1·x)
cost(U ′, code(U ′)n·x) = cost(U ′, x)

cost(U ′, x) = 1

and (U, code ′) is a universal pair with an introspection coefficient equal to 1.
There is a second more sophisticated way of cheating, without modifying

the coding function code. Starting from the universal program U we construct a
program U ′, which, after having erased as many times as possible a given word z
occurring as prefix of the input, behave as U on the remaining input. According
to the recursion theorem [2,4], it is possible to take z equal to code(U ′) and thus
to obtain a universal program U ′ such that, for all y ∈ Σ� having not code(U)′

as prefix,
cost(U ′, code(U ′)n · y) = nk1 + k2(y),

where k1 and k2(y) are positive integers, with k1 being independent of y. Then
we have

cost(U ′, code(U ′)n+1·y)
cost(U ′, code(U ′)n·y) = cost(U, x)+(n+1)k1+k2(y)

cost(U, x)+nk1+k2(y) =

1 + k1
cost(U, x)+k2(y)+nk1

.

By letting n tend toward infinity we obtain an introspection coefficient equal to
1 for the pair (U ′, code).

Unfortunately our introspection coefficient definition, page 25, does not dis-
allow these two kinds of cheating. By imposing Hypothesis 2, the first way of
cheating is still possible and the second one can be prevented by imposing that
the function ϕ never produces the empty sequence. But this last restriction seems
to be ad hoc.

What one really would like to prevent is that the function code or the program
U “behaves differently” on the program P , depending whether P is or is not equal
to U . It is an open problem to express this restriction in the definition of the
introspection coefficient.

References

1. Marvin Minsky, Computations: Finite and Infinite Machines, Prentice-Hall, 1967.
2. Hartley Rogers, Theory of Recursive Functions and Effective Computability,

McGraw-Hill, 1967, also MIT Press, fifth printing, 2002.
3. Yurii Rogozin, Small universal Turing machines, Theoretical Computer Science, Vol-

ume 168, number 2, november 1996.
4. Michael Sipser, Introduction to the Theory of Computation, PWS Publishing Com-

pany, 1997.

On the Complexity of Universal Programs 35

Appendix: Graph of the Universal Program U2

0 7

u
z
+

o
o
+

i
i
+

zu−

oo+

ii+

z
z
+

zz+
8 c d

ui+

oo+
iu+

zz+ oo+

ii−

oo+

ii+
zz+

7

a b

c d

uu− ou−

iu+

uu+

zz−

uu+

zz−

uo− ui−

6

u
u
+

o
o
+

i
u
+

uu−
oi+

io+

zz−

5
u
u
+

o
o
+

i
i
+

zz−

uz+ oz+
uu+

ou+

iu+zu+

oo+uo+

io+

zo+

ui+

oi+

ii+zi+

oz− iz−

zz−

zo−

uu+

oo+
ii+

zi−

uu+

oo+
ii+

4ab

oo−

io−
uz−oz−

iz−

zz−uz+

oz+

iz+ zz+

oo+

iu+

oo+

ii+

o
i
+

io−

zz−

u
u
+

o
o
+

i
i
+

zz−

9
zz+ o

o
+

i
i
+

z
z
+

1

ii+oo+

iu−

oo+

o
o
+

i
i
+

z
z
+

zz+

oi−io−

o
o
+

i
i
+

z
z
+

ui+

o
o
+

i
i
+

z
z
+

uo+

iu−

ou−

uu−

zz−

iu+

ou+

o
o
+

i
i
+

z
z
+

uo+

u
o
+

zz−

oo+

o
o
+

i
i
+zz+

2

oo+

iu−

ui+

o
i
+

i
o
+

z
u
−

oo− ii−

uo+
o
o
+

i
i
+

zu+

uz+
o
o
+

i
i
+

zi+

oi−

ii−
u
u
+

o
o
+

i
i
+

z
z
+

oo−
3

uu− ou− iu− zu−

uu−o
u
−

i
u
−

zu−uu−

o
o
+

i
i
+

z
z
+

u
o
−

o
o
+

i
i
+

z
z
+

u
i
−

o
o
+

i
i
+

z
z
+

uz−

o
o
+

i
i
+

z
z
+

zu+

ou+

iu+

uo+

oo+

io+
zo+

ui+
oi+

ii+

zi+
uu+

oz+

iz+

zz+

uz+ oz+

Finite Sets of Words and Computing�

(A Survey)

Juhani Karhumäki

Department of Mathematics and
Turku Centre for Computer Science

University of Turku
FIN-20014 Turku, Finland

karhumak@cs.utu.fi

Abstract. We discuss about two recent undecidability results in formal
language theory. The corresponding problems are very simply formulated
questions on finite sets of words. In particular, these results underline
how finite sets of words can be used to perform powerful computations.

1 Introduction

In the past few years two important problems on finite sets of words have been
solved. First in [KL03b] it was shown that the equivalence problem for finite
substitutions on the language ab∗c is undecidable. Then, very recently, M. Kunc,
see [Ku05], solved the 30-year-old Conway’s Problem even in a very strong form,
namely by showing that the maximal set commuting with a given rational set
needs not be rational, nor even recursively enumerable.

The solutions have at least two common features. First of all they show an
undecidability in a very simple set-up for finite languages. Second, both of the
solutions are a bit surprising – the answers were, at least at the very beginning,
expected to be opposite.

A common bottomline of both of these solutions is that they show how finite
sets can be used to simulate powerful computing processes. This is the point
we want to make in this presentation. Consequently, our goal is to recall major
results related to above mentioned problems, as well as to discuss the compu-
tational processes used, not in technical but in informal level. So no complete
proofs are presented here.

After preliminaries in Section 2 we consider so-called morphic mappings,
that is mappings which are compositions of morphisms and inverse morphisms.
We recall their close connections to finite transductions which are mappings
realizable by finite state machines. In Section 4 we move to our first important
problem: the undecidability of the equivalence problem of finite substitutions
on the language ab∗c. Here the computational power of finite substitutions is
illustrated. In Section 5 we ask why the above result is important, and try to

� Supported by the Academy of Finland under the grant 44087

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 36–49, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Finite Sets of Words and Computing 37

answer this mainly via applications of the result. In Section 6 we conclude with
the recent solution of Conway’s Problem, as well as state some related results.
These together with results of Section 4 emphasize a drastic difference between
the “nondeterminism” and the “unambiguity” in certain problems.

2 Preliminaries

We assume that the reader is familiar with the basics of formal language theory,
see e.g. [Sa73],[HU79] or [Be79]. The following lines are mainly to fix the used
terminology.

We denote a finite alphabet by A, the free monoid (resp. semigroup) it gen-
erates by A∗ (resp. A+). Elements of A∗ are called words, and subsets of A∗

are called languages. A morphism from A∗ into B∗ is a mapping h satisfying
h(uv) = h(u)h(v) for all u, v ∈ A∗. In particular, the image of the empty word 1
goes to the empty word under h, i.e. h(1) = 1. The inverse of a morphism h−1

is a partial mapping from B∗ into 2A∗
, that is into the monoid of languages over

A. By a morphic mapping we mean any composition of morphisms and inverse
morphisms. We denote the submonoid of 2B∗

consisting of all finite languages
by Fin(B).

A finite substitution σ is a morphism from A∗ into Fin(B). Hence to define
it it is enough to give the values h(a) for all a ∈ A. A finite substitution σ can
be decomposed as σ = h ◦ c−1, where c is a length preserving morphism often
referred to as a coding. In particular, a finite substitution is a special case of
morphic mappings of the form h1 ◦ h−1

2 , where h1 and h2 are morphisms.
We denote by H, H−1 and FS the families of morphisms, inverse morphisms

and finite substitutions. Similarly, for example H ◦ H−1 denotes the family of
morphic mappings of the form h2 ◦h−1

1 where h1 and h2 are morphisms. Finally,
by H∗ we denote the family of all morphic mappings.

As is well known a language L ⊆ A∗ is rational if it is accepted by a finite
automaton A, denoted as L = L(A). Similarly, a mapping τ : A∗ → 2B∗

is
rational if it is computed by a finite transducer, e.g. a finite automaton with
outputs. Viewing τ as a many valued mapping we often write τ : A∗ → B∗.
We do not present the formal definition of above notions. Instead we recall that
finite automata are described by transitions

p
a−→ q

and finite transducers by transitions

p
a,α−→ q.

Here p and q denote the states, a the input symbol and α the output word as-
sociated to this transition. If the cardinality of the input alphabet is one the
automaton (the transducer) is unary. They are deterministic if q (resp. α and q)
is unique for each pair (a, p). Finally, a transducer is called input deterministic if
q (but not necessarily α) is unique for each pair (a, p). (Actually in the two last

38 J. Karhumäki

definitions we assume also the unique initial state.) We call two automata (resp.
finite transducers) equivalent if they define the same language (resp. transduc-
tion).

Two basic results are

Theorem 1. (Folklore) (i) The equivalence problem for deterministic finite
transducers is decidable.

(Griffiths, 1969) (ii) The equivalence problem for finite transducers is unde-
cidable.

A remarkable extension of Theorem 1 (ii) is as follows:

Theorem 2. (Ibarra, 1978; Lisovik, 1979) The equivalence problem for unary
finite transducers is undecidable.

Note that unary above means with respect to the input (or output but not
both) alphabets. If both the alphabets are unary the problem is trivially decid-
able.

A variant of finite transducers is a so-called defence system. It is a finite state
machine where transitions are of the form

p
a,n−→ q,

where p, q and a are as above, but n is an integer, so-called weight. The ma-
chine contains just one initial state, and all states are final. It is allowed to be
nondeterministic. A weight of a computation is the sum of the weights on the
corresponding path. We say that a computation is defending if its weight is zero.
Finally, a defence system is called reliable if every input word has a defending
computation.

Now, Theorem 1 (ii) can be modified to (by using PCP):

Theorem 3. (Lisovik, 1990) It is undecidable whether a given defence system
is reliable.

Some further notions are defined later when needed.

3 Morphic Mappings

In this section we review a few results on morphic mappings, mainly as a back-
ground material for the next section. We start by two representation results.

Theorem 4. ([KL83], [LL83]) Each rational transduction τ : A∗ → B∗ allows
a decomposition

τ = h4 ◦ h−1
3 ◦ h2 ◦ h−1

1 ◦m,

where each hi is a morphism and m is a marking adding a right endmarker to
a word.

Finite Sets of Words and Computing 39

Idea of the proof. Instead of proving the result here we present an illustra-
tion which explains how the morphisms and inverse morphisms can be used to
simulate computations of a finite transducer T realizing τ . So let us consider a
computation

i
a0, . . . , at, α0, . . . , αt→ t,

where ai’s are letters, αi’s are words and pi
ai,αi→ pi+1 corresponds a step in

the computation. The illustration is as in figure 1.
Here we first mark the input (for technical reasons not explained here), then

guess a sequence of transitions and transform it to a single word. Next step is
crucial: We select those sequences which correspond computations. Here an es-
sential point is that in the previous coding the inputs are separated by a constant
number of zeros (that is j = i′ meaning that the states q and p′ coincide). Fi-
nally, we project the output from the computation. Note that if T never outputs
the empty word all morphisms above are nonerasing. ��

The above technique, and its variants, allowes to prove many versions and
sharpening of Theorem 4. For example, we have a characterization of morphic
mappings.

Theorem 5. (Latteux, Turakainen, 1987) Each morphic mapping H can be
written in the form

H = h−1
4 ◦ h3 ◦ h−1

2 ◦ h1.

When combining these results with Theorem 1 we obtain:

Corollary 1. The equivalence of two morphic mappings is undecidable.

In order to sharpen this result, and in order to search for a borderline between
the decidability and the undecidability, we recall the problem area defined by
Culik II and Salomaa, see [CS78]. Let L be a family of languages, like those of
rational and context-free languages R and CF , respectively. Further, let f and
g be mappings on a language L ∈ L. We say that f and g are equivalent on L,

in symbols f
L≡ g, if

f(w) = g(w) for all w ∈ L.

The equivalence problem of F on L asks to decide, for two given mappings
f, g ∈ F and a language L ∈ L, whether h and g are equivalent on L.

A few simple examples are:

Example 1. The equivalence of morphisms on rational languages is decidable –
due to the pumping property of R and a simple combinatorial lemma on words.

Example 2. The equivalence of morphisms on context-free languages is decid-
able as well, see [CS78], although clearly more complicated than the problem of
Example 1.

Now, we can state a strict borderline between the decidability and the unde-
cidability in the above set-up.

40 J. Karhumäki

a0a1 · · · · · · aa′ · · · · · · at

·m mark

a0a1 · · · · · · aa′ · · · · · · at#

h−1
1

guess

· · · (p, a, q)(p′, a′, q′) · · ·

h2 transform

· · · 0ia0m−j0i′a′0m−j′ · · ·
m zeros

h−1
3 select

(p, a, q)(q, a′q′)

h4 project

α0α1 · · · · · ·αα′ · · · · · ·αt

Fig. 1.

Theorem 6. [KK85] The equivalence problem of H−1 ◦ H on R is decidable
while that of H ◦H−1 on R is undecidable.

What remained open here is a special case of the latter result. Indeed, finite
substitutions are special cases of the mappings of the form H◦H−1, in fact they
are in H ◦C−1, where C denotes the family of codings (so that their inverses are
renamings of the letters).

Finite Sets of Words and Computing 41

This problem was formulated in [CuK83], and more explicitly in [K85], and
actually expected to be decidable. It, however, turned out to be very challenging.
This was noticed very soon, e.g. by a result of J. Lawrence, see [La86], which
shows that even the rational language ab∗c does not possess a finite test set, that
is a finite subset such that to test whether two finite substitutions are equivalent
on L it suffices to check this on F .

Consequently, there remained the following two problems.

Problem 1. Is the equivalence problem of finite substitutions on rational lan-
guages decidable?

Problem 2. Is the equivalence problem of finite substitutions on the regular lan-
guage ab∗c decidable?

These are the problems of the next section.

4 Finite Substitutions

This section is devoted to the first fundamental result of this survey. We consider
Problems 1 and 2 introduced in the previous section. The first breakthrough
result was proved by L. Lisovik.

Theorem 7. (Lisovik, 1997) It is undecidable whether two finite substitutions
are equivalent on regular languages. In fact, the regular language can be chosen
to be a{b, c}∗d.

Note that Theorem 7 was reproved (and explained) in [HH99]. As noted
already in [CuK86], Theorem 7 has the following corollary – essentially due to
the fact that the set of accepting computations of a finite automaton forms a
rational language over the set of its transitions.

Corollary 2. The equivalence problem of input deterministic finite transducers
is undecidable.

The next step was to sharpen the construction of the proof of Theorem 7 in
order to replace the language L1 = a{b, c}∗d by the language L2 = ab∗c. Note
that these two languages are in many aspects very different: the first one is
unbounded as well as essentially over a binary alphabet, while the second one is
bounded and essentially over the unary alphabet. What was proved in [KL03a]
was that L1 can be replaced by L2 if at the same time the equality is relaxed to
the inclusion, that is the question

′′Is ϕ(abnc) ⊆ ψ(abnc) for all n ≥ 0?′′

is asked for given two finite substitutions ϕ and ψ.

Theorem 8. ([KL03a]; Turakainen, 1988) The inclusion problem of two finite
substitutions on ab∗c is undecidable.

42 J. Karhumäki

Actually, this was proved also in [Tu88]. Finally, in [KL03b] a further exten-
sion was achieved to obtain

Theorem 9. ([KL03b]) It is undecidable whether two finite substitutions are
equivalent on the language ab∗c.

Idea of the proof. Without going into a formal proof (which is rather long) we
want to illustrate the main construction used in it. It resembles the construction
shown in Theorem 4, however, now we need much more involved codings. The
result is reduced to Theorem 3, that is defending computations are simulated by
finite substitutions on ab∗c.

First we note that the defence system can be assumed so that the only weights
are −1, 0 and 1. The illustration is as shown in figure 2.

q0

p q
a, d

q
fa computation in D

p a en- -coded q (∗∗)

&

d=-1: p a encoded q

d=0: p a encoded q

d=1: p a en- -coded q

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(∗ ∗ ∗)

Fig. 2.

So transitions are encoded, as in the proof of Theorem 4. Now this is done
in two ways: First by encoding the states and the input symbol using always

Finite Sets of Words and Computing 43

two blocks of words (case (**)), and also in another way, where the weights are
taken into account (case (***)). In this latter encoding the number of blocks is
either 1, 2 or 3 depending on whether the weight of the transition is −1, 0 or 1.
The above blocks are images of the letter b under the both finite substitutions
ϕ and ψ. Actually, the image of b consists always of two “consecutive” blocks
under both of the finite substitutions.

Without going into details, for which we refer to [KL03b], we recall that the
reliability of the defence system D considered is related to the equivalence of
ϕ and ψ on ab∗c as follows. Defending computations are those where the total
weight is 0. A computation of length n according to encodings of (∗∗) produces
2n blocks of words. Equally many are obtained according to (∗ ∗ ∗) using the
same number n of b’s by taking the first alternative as many times as the third.
This is how the counting of b’s is related to the safety of computations. There
are several technical matters not explained here. One thing, however, should be
emphasized: As we said, both ϕ and ψ are equally defined on b. In order to make
use of the above idea of having the second computation (which checks the safety)
we must be able to unbalance the computations at the beginning, that is on a.
This, indeed, can be done by allowing ϕ(a) to have one extra value compared
to those of ψ(a). With the exception of this one value ϕ and ψ are identically
defined.

It follows that D is reliable if and only if ϕ and ψ are equivalent on the
language ab∗c. ��

5 Applications

In this section we raise a question why the result of the previous section is
interesting. Obvious answers are that it solves a simply formulated longstanding
open problem in an interesting research topic. And even more importantly the
solution is not what was expected at the beginning.

However, we believe, that there are even more important answers. Namely,
the result has a few fundamental consequences. First, it extends the undecid-
ability of the equivalence problem for finite transducers to amazingly simple
machines. Let T be a finite transducer of the type depicted as in figure 3.

(∗) 1 2

a, α

a, γ#

α, β

Fig. 3.

44 J. Karhumäki

So in T
- there are just two states, and
- the input alphabet is unary.

We have:

Theorem 10. ([KL03b]) The equivalence problem of finite transducers of type
(∗) is undecidable.

The result follows directly from Theorem 9 by identifying the triples (α, β, γ)
with the values (ϕ(a), ϕ(b), ϕ(c)) of a finite substitution ϕ. Different input sym-
bols are not needed since they can be encoded to states of the transducer. How-
ever, the marker # is essential.

The other application is to systems of equations over finite sets of words.
We need some terminology. Let X be a finite set of unknowns and A a finite
alphabet. An equation over A∗ with X as the set of unknowns is a pair (u, v) ∈
(X∪A)+×(X∪A)+, usually written as u = v. A solution of an equation e : u = v
is a morphism h : (X ∪A)∗ → A∗ identifying u and v and being the identity on
letters of A, that is

h(u) = h(v) and h(a) = a for all a ∈ A.

Further a system of equations is a set of equations. We call a system rational,
if there exists a finite transducer translating the left hand sides of the equations
to the corresponding right hand sides. For example, the system S = {abynz =
w2n|n ≥ 0} is rational. The solutions of systems of equations are defined in the
natural way.

A fundamental problem is the satisfiability problem for equations (or systems
of equations). It asks to decide whether a given equation (or system of equations)
possesses a solution. Note that in order to avoid trivialities the above equations
are with constants.

Everything above was defined with respect to word monoids A∗, but extends
in a natural way to all monoids and semigroups. In particular, we can talk about
the satisfiability problem for finite sets of words, i.e. in the monoid Fin(A). Of
course, in this case the constants in the equations are finite languages.

In the word case we have the following fundamental results.

Theorem 11. (Makanin, 1976) (i) The satisfiability problem for word equations
is decidable.

(ii) The satisfiability problem for finite sets of word equations is decidable.
(iii) The satisfiability problem for rational sets of word equations is decidable.

A breakthrough result here was that of S. Makanin. Indeed, even before that
it was known that (i) and (ii) are equivalent, and the equivalence of (ii) and (iii)
is not very hard either, see [CuK83]. The second fundamental achievement on
this area was a recent paper by W. Plandowski, see [Pl04], which not only gave
a new solution for problem (i), but also showed that it is in PSPACE.

When we move from words to finite sets of words the situation changes
drastically: only in (iii) the decidability status is known, and even then the
problem is undecidable. This is the second application of Theorem 10.

Finite Sets of Words and Computing 45

Theorem 12. ([KL03b]) The satisfiability problem of rational systems of equa-
tions in Fin(A) is undecidable.

In fact, it is not only that Theorem 12 holds, but also it is undecidable whether a
given candidate is a solution of a given rational system of equations over Fin(A).
In other words, not only the “emptiness” problem but also the “membership”
problem is undecidable here.

So what remains is

Problem 3. Is the satisfiability problem for a single equation decidable in Fin(A)?

Although we do not know whether (iii) and (i) (or even (ii) and (i)) are equivalent
in the monoid of finite languages, Theorem 12 is an evidence that Problem 3 is
likely to be hard – at least to prove the decidability. Another evidence is that
even a single unknown variant is open:

Problem 4. Is it decidable whether, for two given finite sets A and B, the equa-
tion

Az = zB

has a solution?

In other words, Problem 4 asks whether two finite sets are conjugates.

6 Conway’s Problem

In this section we consider another fundamental problem on finite (or rational)
sets of words. Namely, we consider the commutation equation

(1) xy = yx.

As is well known, see e.g. [Lo83] or [CK97], in the word monoid (1) is equivalent
to the fact that x and y are powers of a common word. In the monoid of finite
languages, that is in Fin(A), a characterization is not likely to be achievable.
Even much simple problems are hard.

Conway’s Problem is one of the challenging problems. It was presented by J.
Conway in 1971, see [Co71], asking whether the maximal set commuting with a
given finite set is rational. Actually, he asked the question for rational instead of
finite sets. For a given X ⊆ A∗ we denote the above maximal set by C(X) and
call it the centralizer of X .

It is straightforward to see that C(X) always exists – it is the union of all sets
commuting with X . It is also a monoid or a semigroup (depending on whether
the empty word is the considerations). Finally, C(X) is a superset of X∗ and a
subset of all prefixes in X∗, i.e.

X∗ ⊆ C(X) ⊆ Pref(X∗).

It turned out that not only the Conway’s Problem is hard, but even to show that
the centralizer is recursive or recursively enumerable was a challence. Obvious

46 J. Karhumäki

ways to attack this were missing. A reason for this can be illustrated as follows.
Assume that z ∈ C(X). Then, for any x ∈ X , there must be x′ ∈ X such that
z′ = x−1zx′ is in C(X) (and the same to the left). This can be depicted as in
figure 4.

z ∃x′ ∈ X

∀x ∈ X

z′

Fig. 4.

The procedure can be continued, but how to conclude that actually z′ (and hence
also z) is in C(X). This is a real difficulty!

A simplified related question is arised in the next example.

Example 3. Let X ⊆ A+ be a finite set and ω ∈ A+ a word. We define a rewriting
rule by the condition

(2) u⇒ v iff ∃x, x′ ∈ X : v = x−1ux′.

As usual let ⇒∗ be the transitive and reflexive closure of ⇒, and

OCC(ω) = {w ∈ A∗|ω ⇒∗ w}.

We can say that OCC(w) is the (one-way) orbit closure under commutation.
Although the above two problems resemble each other there is a crucial dif-
ference: In Conway’s Problem we have the quantification “∀x ∈ X” while in
OCC-problem we do not have this. Consequently, in the latter case if the rule
can be applied result is known to be in the language.

It is not difficult to see that OCC(ω) is always context-free (in fact, even
one counter language), but to show that it is rational is more demanding. We
can modify (2) in a natural way to 2-way rewriting by setting “v = x−1ux′ or
v = x′ux−1” instead of “v = x−1ux′”. Amazingly, we do not know how the
family of languages thus obtained is related to Chomsky hierarchy. ��

Now, let us return to Conway’s Problem. We present here only a few basic
results on it, for a more complete survey we refer to [KP04]. In order to formulate
the first results we recall that a prefix set is a set where no word is a prefix of
another, and that each prefix set L possesses the unique minimal root ρ(X) (due
to the fact that the monoid of prefix sets is free).

Theorem 13. (Ratoandromanana, 1989) (i) The centralizer of a prefix set L is
(ρ(L))∗.

[KP02] (ii) The centralizer of a three-element set L = {u, v, w} is L∗.

Finite Sets of Words and Computing 47

Interestingly, in both of these cases we can characterize all the sets commuting
with L:

(3) XL = LX ⇔ ∃I ∈ N : X =
⋃
i∈I

ρ(L)i.

For 4-element sets such a characterization does not hold any more, see [CKO02].
Simple, but not trivial, proofs of Theorem 13 can be found in [KLP05] and
[KLP03]. Actually, the characterization (3) is a nice exercise even for 2-element
sets, see e.g. [BK04].

Many approaches have been developed to attack Conway’s Problem, see
[Pe02] and [KP04]. However, they were successfull only in very restricted cases.
This was recently explained by M. Kunc in his breakthrough result solving the
general conjecture, and even in the very strong form:

Theorem 14. (Kunc, 2005) The centralizer of a finite set need not be recur-
sively enumerable.

The proof of Theorem 14 is technically pretty complicated, but very much in
the spirit of this paper. It shows how finite sets of words can be used to simulate
powerful computations, in this case tag-systems cf. [Mi67].

Another recent result is a solution of Conway’s Problem for all codes, for
definitions see [BP85].

Theorem 15. [KLP05] The centralizer of a finite (or even rational) code is
rational.

A drastic difference between Theorems 14 and 15 is interesting. It is, we
believe, explained by the fact that for a code X the product

X · C(X)

is unambiguous, and hence so is the product XY for any Y commuting with
X . At least this unambiguity plays a central role in the proof. Note also that
despite of Theorem 15, we do not know whether the characterization (3) holds
for all codes.

7 Concluding Remarks

We have discussed two problems on finite sets of words. These problems are very
simply formulated and natural ones. However, they both were open for decades,
until very recently both were solved. Although the problems themselves are not
related, and neither are their solutions, it turned out that both of the solutions
were based on an interesting property. Namely, to the capability of finite sets of
words to carry out powerful computations. This is the point we wanted to make
in this presentation.

There is also another aspect which should be emphasized. The power of finite
sets in our problems seems to be based on ambiguity. If we take unambiguous

48 J. Karhumäki

instances of the problems they will be essentially simpler. Indeed, for codes,
that is for sets where the product X · C(X) is ambiguous, the centralizer be-
comes rational. Similarly, the equivalence problem of prefix substitutions, that
is substitutions for which images of letters are prefix sets, becomes decidable on
regular languages, see [KL99].

Acknowledgement: The author is grateful to Dr. A. Okhotin for clarifying
Example 3 and P. Salmela for his help in finalizing the manuscript.

References

[Be79] J. Berstel, Transductions and Context-Free Languages, Teubner, 1979.

[BK04] J. Berstel and J. Karhumäki, Combinatorics on Words – A Tutorial, in: G.
Paun, G. Rozenberg and A. Salomaa (eds), Current Trends in Theoretical Computer
Science, The Challences of the New Century, World Scientific, Singapore (2004),
415–476.

[BP85] J. Berstel and D. Perrin, Theory of Codes, Academic Press, New York (1985).

[CuK83] K. Culik II and J. Karhumäki, Systems of equations and Ehrenfeucht’s con-
jecture, Discr. Math. 43, 1983, 139–153.

[CuK86] K. Culik II and J. Karhumäki, The equivalence problem of finite valued trans-
ducers (on HDT0L languages) is decidable, Theoret. Comput. Sci. 47, 1986, 71–84.

[CK97] C Choffrut and J. Karhumäki, Combinatorics on Words, in: Rozenberg, G.,
Salomaa, A. (eds.), Handbook of Formal Languages, Vol. 1, Springer-Verlag (1997),
329–438.

[CKO02] C. Choffrut, J. Karhumäki and N. Ollinger, The commutation of finite sets:
a challenging problem, Theoret. Comput. Sci. 273 (1-2) (2002), 69–79.

[Co71] J. H. Conway, Regular Algebra and Finite Machines, Chapman Hall (1971).

[CS78] K. Culik and A. Salomaa, On the decidability of homomorphism equivalence
for languages, J. Comput. Systems Sci. 17 (1978), 241–250.

[Gr68] T. V. Griffiths, The unsolvability of the equivalence problem for λ-free nonde-
terministic generalized machines, J. Assoc. Comput. Mach. 15, 1968, 409–413.

[HH99] V. Halava and T. Harju, Undecidability of the equivalence of finite substitu-
tions on regular language, Theoret. Informat. and Appl. 33, 1999, 117–124.

[HU79] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages
and Computation, Addison-Wesley, 1979.

[Ib78] O. Ibarra, The unsolvability of the equivalence problem for ε-free NGSM’s with
unary input (output) alphabet and applications, SIAM J. Comput. 7, 1978, 524–532.

[K85] J. Karhumäki, Problem P 97, Bull. EATCS 25, 1985, 185.

[KK85] J. Karhumäki and H. C. M. Kleijn, On the equivalence of composition of mor-
phisms and inverse morphisms on regular languages, RAIRO Theoret. Informatics
19 (1985), 203–211.

[KL83] J. Karhumäki and M. Linna, A note on morphic characterization of languages,
Discret. Appl. Math. 5 (1983), 243–246.

[KL99] J. Karhumäki and L. Lisovik, On the equivalence of finite substitutions and
transducers, in: J. Karhumäki, H. Maurer, G. Paun and G. Rozenberg (eds), Jewels
are Forever, Springer, Berlin, 1999, 97–108.

[KL03a] J. Karhumäki and L. P. Lisovik, A simple undecidable problem: The inclusion
problem for finite substitutions on ab∗c, Inf. and Comput. 187, 2003, 40–48.

Finite Sets of Words and Computing 49

[KL03b] J. Karhumäki and L. P. Lisovik, The equivalence problem of finite substitu-
tions on ab∗c, with applications, Intern. J. Found. Comput. Sci. 14, 2003, 699–710.

[KLP03] J. Karhumäki, A. Latteux and I. Petre, The commutation with codes and
ternary sets of words, Proceedings of STACS’03, Lecture Notes in Comput. Sci.
2607, 2003, 74–84.

[KLP05] J. Karhumäki, M. Latteux and I. Petre, Commutation with codes, Theoret.
Comput. Sci. (to appear).

[KP02] J. Karhumäki and I. Petre, Conway’s Problem for three-word sets, Theoret.
Comput. Sci. 289/1 (2002), 705–725.

[KP04] J. Karhumäki and I. Petre, Two Problems on Commutation of Languages,
in: G. Paun, G. Rozenberg and A. Salomaa (eds), Current Trends in Theoretical
Computer Science, The Challences of the New Century, World Scientific, Singapore
(2004), 477–494.

[Ku05] M. Kunc, The power of commuting with finite sets of words, Proceedings of
STACS’05, Lecture Notes in Comput. Sci. (to appear).

[La86] J. Lawrence, The nonexistence of finite test set for set-equivalence of finite
substitutions, Bull. EATCS 28, 1986, 34–37.

[Li79] L. P. Lisovik, The identity problem of regular events over cartesian product of
free and cyclic semigroups, Doklady of Academy of Sciences of Ukraine 6, 1979,
410–413.

[Li91] L. P. Lisovik, An undecidability problem for countable Markov chains, Kiber-
netika 2, 1991, 1–8.

[Li97] L. P. Lisovik, The equivalence problem for finite substitutions on regular lan-
guages, Doklady of Academy of Sciences of Russia 357, 1997, 299–301.

[LL83] M. Latteux and J. Leguy, On the composition of morphisms and inverse mor-
phisms, Lecture Notes in Comput. Sci. 154, Springer-Verlag, 1983, 420–432.

[Lo83] M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA., (1983).
[LT87] M. Latteux and P. Turakainen, A new normal form for compositions of mor-

phisms and inverse morphisms, Math. Systems Theory 20, 1987, 261–271.
[Ma77] G. S. Makanin, The problem of solvability of equations in a free semigroups,

Mat. Sb. 103, 1977, 147–236; Math. USSR Sb. 32, 1977, 129–198.
[Mi67] M. Minsky, Computation: Finite and Infinite Machines, Prentice Hall, Engle-

wood Cliffs, N. J., 1967.
[Pe02] I. Petre, Commutation Problems on Sets of Words and Formal Power Series,

PhD Thesis, University of Turku (2002).
[Pl04] W. Plandowski, Satisfiability of word equations with constants is in PSPACE,

Journal of the ACM 51 (3), 2004, 483–496.
[Ra89] B. Ratoandromanana, Codes et motifs, RAIRO Inform. Theor. 23(4) (1989),

425–444.
[Sa73] A. Salomaa, Formal Languages, Academic Press, New York, 1973.
[Tu88] P. Turakainen, On some transducer equivalence problems for families of lan-

guages, Intern. J. Comput. Math. 23, 1988, 99–124.

Universality and Cellular Automata

K. Sutner

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213
sutner@cs.cmu.edu

Abstract. The classification of discrete dynamical systems that are
computationally complete has recently drawn attention in light of Wol-
fram’s “Principle of Computational Equivalence”. We discuss a classi-
fication for cellular automata that is based on computably enumerable
degrees. In this setting the full structure of the semilattice of the c.e.
degrees is inherited by the cellular automata.

1 Intermediate Degrees and Computational Equivalence

One of the celebrated results of recursion theory in the 20th century is the pos-
itive solution to Post’s problem: there are computably enumerable sets whose
Turing degree lies strictly between ∅, the degree of any recursive set, and ∅′,
the degree of the Halting set or any other complete computably enumerable
set. The result was obtained independently and almost simultaneously by R. M.
Friedberg and A. A. Muchnik, see [8,14]. The method used in their construction
of an intermediate degree is remarkable since it departs significantly from ear-
lier attempts by Post and others to obtain such degrees by imposing structural
conditions such as simplicity, hyper-simplicity or hyper-hyper-simplicity on the
corresponding c.e. sets, see [17,11] for background information. The conditions
are chosen so as to clearly rule out decidability and the hope was they also might
enforce incompleteness. Of course, a non-trivial existence proof is required for
this approach to succeed. Unfortunately, these attempts failed quite dramati-
cally. For example, it was shown by Dekker that there is a hyper-simple set in
every non-recursive computably enumerable degree and hence in particular in
the complete degree.

By contrast, the so-called priority method used in the Friedberg-Muchnik
construction builds two c.e. sets A and B whose only tangible property is that
they are incomparable with respect to Turing reductions. The method general-
izes easily to a construction of infinitely many incomparable sets. Alas, the sets
constructed via priority arguments appear somewhat ad hoc and artificial. It
is therefore tempting to search for “natural” examples of intermediate degrees,
examples that would presumably arise as a side-effect of a less complicated con-
struction. By natural we here mean that the generating device should admit a
very simple description as opposed to, say, invariance under automorphisms of
the semilattice of c.e. degrees. Of course, there are well-known results to the effect

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 50–59, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Universality and Cellular Automata 51

that every c.e. degree appears in a certain mathematical context. For example,
all c.e. sets are Diophantine and can thus be defined by an integer polynomial.
Similarly, every c.e. set is Turing equivalent to a finitely axiomatizable theory
and word problems in finitely presented groups may have arbitrary c.e. degree.
But the point here is to obtain a specific example of an intermediate degree
using a reasonably simple mechanism to do so. For example, an elementary cel-
lular automaton would certainly provide an indisputably natural example for
an intermediate degree. A candidate for such an elementary cellular automaton
might be rule 30, see the comments in section 5.

However, it is not clear at present whether there is much hope to find such
examples. Indeed, in [28] Wolfram introduces his “Principle of Computational
Equivalence” (PCE) which suggests, among other things, that the search is fu-
tile: Wolfram asserts that a certain class of computational processes obeys a
0/1 law: these processes are either decidable or already computationally univer-
sal. The evidence that Wolfram adduces for this principle is directly relevant
to the search of natural examples: a large collection of simulations on various
discrete dynamical systems such as Turing machine, register machines, tag sys-
tems, rewrite systems, combinators, and cellular automata. It is pointed out in
chapter 3 of [28], that in all these classes of systems there are examples that
exhibit exceedingly complicated behavior (and presumably even computational
universality) even when the system in question is surprisingly small and has a
very short description.

The reference contains a particularly striking example for a universal system
that nonetheless has a very simple description: elementary cellular automaton
rule number 110. The local map of this automaton is given by the ternary boolean
function ρ(x, y, z) = (x∧ y ∧ z)⊕ y⊕ z where ⊕ denotes exclusive or. It requires
significant effort to show that, using fairly complicated and large segments of
bits as the basic building blocks, it is possible to simulate cyclic tag systems
on this cellular automaton, thus proving universality. There is a noteworthy dif-
ference between this and earlier examples of computationally universal cellular
automata: the required configurations for this argument do not have finite sup-
port but are ultimately periodic in both spatial directions. In fact, it is not hard
to see that rule 110 produces no interesting orbits on configurations with finite
support.

While we are mostly interested in cellular automata as possible sources of
natural intermediate degrees, we will first describe the problem in the slightly
more general setting of an effective dynamical system. As a general purpose
tool to measure the complexity of such a system we adapt M. Davis’s notion
of universality of Turing machines, see [5,6], to avoid coding conventions. We
then discuss how systems of intermediate degree of complexity appear in various
contexts. Needless to say, all of these results are universal rather than specific:
they are similar to Matiyasevic’s characterization of the Diophantine equations
mentioned above in that they show that all c.e. degrees appear in some context
but do not produce concrete or natural examples. Proofs for the results quoted
in this paper as well as technical details can be found in the references.

52 K. Sutner

2 Effective Dynamical Systems, Universality and
Classification

We consider effective dynamical systems of the form C = 〈 C,→〉. Here C is the
space of configurations, and→ is the “next configuration” relation. We write ∗→
for the transitive reflexive closure of →. The configurations are required to be
finitary objects such as words and admit natural codings as integers. The relation
→ has to be primitive recursive on the (codes of the) configurations. In fact, in
all relevant examples → is primitive recursive uniformly in a parameter that
describes the particular instance of the system. E.g., for cellular automata the
next configuration relation is primitive recursive uniformly in the local map of
the automaton. Elementary cellular automata in particular can be parameterized
by an 8-bit rule number. It is clear that the systems discussed in Wolfram’s book
all fit this general pattern.

Computational universality is traditionally defined in terms of simulations.
First, one fixes a coding and decoding function α : N → C and β : C → N .
Second, one adopts a notion of termination for the effective dynamical system
so that an orbit may or may not lead to a “halting” configuration. It has to
be easily decidable, say, primitive recursive, whether a configuration is halting.
If a halting configuration appears in the orbit of α(n) let Y be the first such
configuration and interpret β(Y) as the output of the computation by C on input
n. It is clear that C computes only partial recursive functions and it is natural
to consider the system complete if it can compute all such functions.

While this approach is perfectly adequate for Turing machines or regis-
ter machines it becomes a bit more problematic in the realm of cellular au-
tomata. There is no clear natural notion of termination here and even the cod-
ing functions are not so obvious. We therefore sidestep the issue of simulations
entirely and instead adapt Davis’s definition for universality of a Turing ma-
chine. In [6] Davis suggests that a more robust measure for the complexity of
a Turing machine is the Turing degree of the collection of its instantaneous
descriptions that lead to a halting configuration. For a Turing machine M let
IDM = { I

∣∣ I ∗→ J, J halting }. Then the machine is Davis-universal if IDM is
complete c.e.. Thus, there are no coding functions that might contribute to the
apparent complexity of the machine. It is easy to see that any classically uni-
versal Turing machine is also Davis-universal; however, the opposite is false:
a Turing machine that erases its tape before halting has trivial input/output
behavior but may still be Davis-universal. Surprisingly, it was shown by Davis
that any total recursive function can be computed by a stable Turing machine:
all its instantaneous descriptions lead to a halting configuration. Thus, a stable
Turing machine is trivial in the sense of Davis-universality: IDM comprises all
instantaneous descriptions and is trivially decidable.

In the context of an effective dynamical system C it is thus natural to consider
the complete orbit

OrbC = { (X,Y)
∣∣ X ∗→ Y }

Universality and Cellular Automata 53

which is c.e. given our constraints on the next configuration relation. We can then
use the Turing degree of OrbC as a measure of the complexity of C. Alternatively,
we can interpret the degree measure as a decision problem, the Reachability
Problem for C: given two configurations X and Y we wish to determine whether
Y lies in the orbit of X : is X ∗→ Y ?

Let us now focus on cellular automata. Since we insist on configurations
being finitary we need to constrain the full Cantor space Σ∞ of all biinfinite
words over alphabet Σ. To obtain a reasonable class of configurations C ⊆ Σ∞

one should insist that C is shift-invariant and dense. Furthermore, C must be
closed under continuous shift-invariant maps (i.e. the global maps of cellular
automata). Lastly, in order to obtain a reasonable image of the dynamics of the
map on the whole space we insist on reflection: whenever a configuration X ∈ C
has a predecessor under→ in Σ∞ then it also has a predecessor in C. The classical
choice for such a space of configurations is Cf , the collection of all configurations
with finite support (to obtain reflection one has to either insist on quiescence of
the local map or interpret the notion of finite support appropriately). Another
possibility is to consider spatially periodic configurations of the form ωuω. These
configurations are somewhat special in that they correspond to finite cellular
automata with periodic boundary conditions and all orbits here are necessarily
finite. On the other hand, the largest such configuration space is the collection
of all recursive configurations, see [20] for a proof that reflection holds in this
case.

However, the Cook-Wolfram proof of the universality of elementary cellular
automaton rule 110 suggests to consider a much more narrow class of configu-
rations. To this end, define a configuration to be almost periodic if it has the
form X = ωuwvω where u, v and w are all finite words. Then the class Cap of
all almost periodic configurations has all the properties from above. Note that
reflection does not hold for configurations of the more restricted form ωuwuω.
Furthermore, it is not clear how to transfer the universality argument for rule
110 into this setting. More precisely, the Cook-Wolfram argument uses the in-
finitely many copies of u in ωuwvω to produce timing signals whereas the copies
of v encode the cyclic tag system. Both together operate on the center part w
where the actual simulation of the tag system takes place.

Given a space C of suitable configurations we can define the degree classifi-
cation for cellular automata as follows. For any c.e. degree d let

Cd = { ρ
∣∣ deg(Orbρ) = d }.

where ρ denotes the local map of the cellular automaton. We note that this clas-
sification does not distinguish between the first three levels of the Wolfram clas-
sification in its formalization by Culik and Yu: these three levels are subsumed
by C∅. On the other hand, class C∅′ comprises all computationally universal
cellular automata. The following hierarchy theorem is established in [21,23] over
Cf .

Theorem 1. The degree classes Cd are non-empty for every c.e. degree d.

54 K. Sutner

The construction uses a simulation of a Turing machine that recognizes an
c.e. set W of degree d. As in the case of Davis-universality we have to contend
with unintended instantaneous descriptions, i.e., instantaneous descriptions that
do not occur in any actual computation of the Turing machine. Since it is un-
decidable whether, say, a state of the Turing machine appears in a computation
this requires a somewhat more careful construction than usual. The notion of
stability can be relaxed in this context to mean that unintended configurations
only produce decidable orbits and thus do not alter the degree of Orbρ. Inciden-
tally, in his original paper Davis uses a syntactic normal form for computable
functions rather than a direct modification of Turing machines, see also [15] and
[1] for similar arguments. A suitably modified Turing machine can then be sim-
ulated by a one-dimensional cellular automaton to establish the theorem, see
[23] and [18] for details. The latter reference in particular contains a detailed
discussion of the coding issues.

As a consequence of this result there is little hope to obtain a taxonomy of
cellular automata based on a few simple classes. For example, it follows from
Sack’s density theorem that for any two cellular automaton ρ1 and ρ2 such that
Orbρ1 <T Orbρ2 there exists a third cellular automaton σ of strictly intermediate
complexity: Orbρ1 <T Orbσ <T Orbρ2 . It is well-known that the Σ1-theory of
the semilattice of c.e. degrees is decidable. However, the reason for this decidabil-
ity result lies in the fact that any countable partial order can be embedded into
the semilattice so that the relative computational strength of cellular automata
is indeed arbitrarily complicated. The full theory of the semilattice of c.e. degrees
is known to be undecidable, see [9]; in fact it is extraordinarily complicated: its
degree is ∅(ω).

While Reachability deals with forward orbits, another classical decision prob-
lem for cellular automata is the existence of predecessors: given Y , is there a
configuration X such that X → Y ? Configurations that do not admit a pre-
decessor are often referred to as a Garden-of-Eden. It is easy to see that for
finite or almost periodic configurations the existence of a predecessor is easily
solvable in polynomial time. However, in the two-dimensional case the existence
of an arbitrary predecessor configuration, given a finite target configuration,
is co-c.e.-complete. The same problem is c.e.-complete for finite configurations
and one can show that a suitable choice of cellular automaton will produce a
predecessor problem of arbitrary c.e. degree, see [21].

More complicated predecessor problems for dimension one appear when we
enlarge the class of admissible configurations to all recursive configurations. In
this case it is co-c.e.-complete to determine whether a given configuration has a
predecessor for any non-surjective cellular automaton, see [23]. Of course, sur-
jectivity itself is easily testable in polynomial time for one-dimensional cellular
automata.

Universality and Cellular Automata 55

3 Testing Complexity

The heuristic classification of one-dimensional cellular automata due to Wolfram
[26] is based on the visual inspection of a segment of the orbits of the automaton.
For sufficiently simple cellular automata the classification is quite compelling, see
the many examples in Wolfram’s book. However, any attempt to formalize this
process in general seems to lead to strong undecidability. For example, Culik and
Yu translated the Wolfram classes into the following categories: all configurations
evolve to a fixed point, all configurations evolve to a periodic configuration and
all configurations have decidable orbits, plus the class of all remaining cellular
automata. These classes are shown to be undecidable in [4] where the underlying
space of configurations here is Cf . We mention reference [1] in passing for another
objection to the Wolfram classification. Closer inspection of the low classes shows
the following.

Theorem 2. It is Π2-complete to check whether a finite configuration evolves
to a fixed point. The same holds true for evolution to a periodic configuration.

Spatially periodic configurations of course always evolve to periodic configu-
rations but even in this case it is co-c.e.-complete to test whether a fixed point
is ultimately reached. Likewise it is Σ2-complete to test whether the inevitable
limit cycle has length O(nk) for some fixed k. Here n denotes the length of the
periodic configuration, see [19].

Unsurprisingly, it is even more difficult to determine the type of a cellular
automaton in the degree classification.

Theorem 3. For any c.e. degree d it is Σd
3 -complete to determine whether a

cellular automaton belongs to class Cd.

Similar results hold, mutatis mutandis, for the analogous cumulative hierar-
chies C≤d and C≥d, see [23]. For example, C≤d is Σd

3 -complete for all d < ∅′, but
C≤∅′ comprises all cellular automata and is thus trivial. It follows that it is Σ3-
complete to determine whether all orbits of a cellular automaton are decidable.
However, testing whether the orbits are c.e.-complete is a Σ4-complete task. In
light of these undecidability results it would be desirable to develop a collec-
tion of sufficient conditions for universality. For example, for certain variants of
the Game-of-Life there appears to be hope to identify the key mechanisms that
make some of these automata universal, see [7]. Needless to say, it will be much
harder to find sufficient criteria for properties that prevent universality without
trivializing the orbits, but see the comments in section 5.

Another source of undecidability is the choice of appropriate backgrounds
ωuvω in an almost periodic configuration ωuwvω . As an example, consider again
the universal elementary cellular automaton rule 110. If both u and v have length
1 then the orbit of any almost periodic configuration ωuwvω is trivially decidable.
It is not hard to check that the same is true for slightly larger background
patterns u and v. On the other hand, for sufficiently long background patterns
the orbits become undecidable. There is no algorithmic way to determine the
threshold between the two types of behavior.

56 K. Sutner

Theorem 4. Given a cellular automaton it is undecidable whether orbits on
almost periodic configurations are undecidable for sufficiently long background
patterns.

For rule 110 it is the case that c.e.-complete orbits appear for background
of sufficient length. However, in general this property is undecidable, see [22].
Furthermore, one can construct cellular automata whose Reachability Problem
is undecidable on Cap but whose orbits on backgrounds of any fixed size is always
decidable.

4 The Reversible Case

As we have seen, arbitrary cellular automata can have orbits of every c.e. degree.
It is thus natural to search for restricted classes of cellular automata which
may have less complicated orbits. One natural choice is the class of reversible
cellular automata. The degree classification of the reversible cellular automata
is indeed somewhat less complicated than for arbitrary cellular automata in the
following sense. Consider the Confluence Problem for a dynamical system: given
two configurations X and Y , is there a configuration Z that is reachable from
both X and Y ? In other words, do X and Y lead to the same limit cycle? It
is clear that the Confluence Problem, just like Reachability is always c.e. The
following result was established in [23].

Theorem 5. Given any two c.e. degrees d1 and d2 there is an cellular automa-
ton whose Reachability Problem has degree d1 and whose Confluence Problem
has degree d2.

It is clear that no analogous result can hold for reversible systems: X and Y
here are confluent only in the trivial case where one configuration is reachable
from the other.

The classical reference for reversible computation in the context of the math-
ematical theory of computation, rather than considerations more closely related
to the physics of computation, is Bennett’s paper that shows that arbitrary par-
tial recursive functions can be computed reversibly on a suitable Turing machine,
see [2]. In the construction, the intended output is copied before the computa-
tion is undone using an appropriate history tape. As a consequence, one can
compute 〈 x, f(x) 〉 reversibly given any partial recursive function f . Somewhat
surprisingly, the cost in terms of increased time and space complexity of the com-
putation can be made to be quite modest in Bennett’s construction, see [3]. It
is also noteworthy that a decade prior to Bennett’s paper Lecerf used reversible
computation without generating output to establish the undecidability of cer-
tain equations, see [10]. Lecerf’s construction carries over more naturally to the
setting of cellular automata where input/output behavior is problematic. At any
rate, for any c.e. set W there is a reversible Turing machine that accepts W .

Reversibility in the context of cellular automata is well-studied, see for exam-
ple [25] for an overview. In [13,12] Morita and Harao gave an elegant construction

Universality and Cellular Automata 57

for a reversible one-dimensional cellular automaton that is computationally uni-
versal, showing that the Lecerf-Bennett approach can be carried over into the
realm of cellular automata. The construction allows one to build one-dimensional
reversible cellular automata with relatively little effort. Their argument uses a
three-track automaton whose global map is given by the composition of a shear-
ing transformation (the top track moves to the left by one cell while the bot-
tom track moves to the right) followed by the pointwise application of a map
f : Σ → Σ . More precisely, locally a configuration changes as follows. First the
shearing transformation is applied to align x, y and z in one cell. Then (x, y, z)
is replaced by (x′, y′, z′) = f(x, y, z).

� � x � � � �
� � � y � � �
� � � � z � �

=⇒
� � � x′ � � �
� � � y′ � � �
� � � z′ � � �

The global map of the cellular automaton is then reversible if, and only if,
the local map f is so reversible. In fact, one can even avoid a complete definition
of f so long as the defined part does not include any non-injective assignments.
At any rate, one has the following result for Cf , see [24].

Theorem 6. For every c.e. degree d the degree class Cd contains a reversible
cellular automaton.

The construction combines the standard stability trick with reversibility and
a suitable simulation by a reversible cellular automaton ρ. The crux of the sim-
ulation is again to ensure that unintended configurations do not alter the degree
of ρ. Since the cellular automaton is required to be reversible, no simple era-
sure technique is applicable. Instead, we exploit the upper and lower tracks to
carry additional signal bits so that a cell contains three symbols (xu, y, zv) where
u, v ∈ {0, 1}. As long as the local replacements correspond to appropriate ac-
tions of the underlying Turing machine the signal bits remain unchanged. If an
undesirable event such as the collision of the two tape-heads occurs, the signal
bits between the top and bottom-track are interchanged. Initially, in a finite
starting configuration all bits in the quiescent part of the top track are 0 and 1
in the bottom track. For orbits that do not correspond to a computation of the
Turing machine a signal bit will ultimately escape into the quiescent part and
thereby provide a time-stamp for the configuration, which time-stamp renders
the whole orbit decidable.

It is not clear whether this approach can be carried over to configuration
spaces that lack a “quiescent” part such as recursive configurations: unintended
local interactions here could appear in unboundedly many places and there seems
to be no obvious way to construct time-stamps as in the finite or almost periodic
case.

5 Conclusion

We have seen that intermediate c.e. degrees appear in many places in the study
of the computational complexity of cellular automata, albeit in the form of uni-

58 K. Sutner

form results: all c.e. degrees appear as the complexity of some decision problem
or other associated with the automata. As regards the existence of a natural
example of a specific intermediate degree the situation is much more difficult
though perhaps not entirely hopeless. In a slightly different context H. Fried-
man has suggested on FOM, a mailing list for the foundations of mathematics,
see http://www.cs.nyu.edu/mailman/listinfo/fom, that natural intermediate de-
grees might appear in the form of the theory of a single first-order formula ϕ
in the language L(R) where R is a single binary relation symbol. Specifically
Friedman is interested in the number of quantifiers needed in ϕ to ensure that
the degree of Th(ϕ) = {ψ ∈ L(R)

∣∣ ϕ � ψ } is intermediate. The conjecture is
that 8 quantifiers might suffice. By the same token, considering sufficiently sim-
ple formulae of Peano arithmetic might produce a version of Wolfram’s PCE; to
wit, Th(ϕ) would appear to have degree ∅ or ∅′ for all formulae of size no more
than 20.

It is unclear how cellular automata and their orbits relate to the notion of a
“process” in Wolfram’s PCE. One plausible objection against the use of interme-
diate degrees as a counterargument to PCE is that the construction relies heavily
on information hiding. Indeed, in the standard Friedberg-Muchnik construction
of two incomparable c.e. degrees the two set A and B so obtained have the
property of being low, but their disjoint union is complete, see [16]. Thus, if one
were to view the construction as a whole as a process then indeed this process
would be computationally universal. Orbits of cellular automata would seem to
provide little opportunity for information hiding, but the general Reachability
problem may not be the right tool to access the information.

If one is willing to adopt different notions of reducibility other lines of in-
quiry become available. Recent work by Simpson has shown that if one adopts
Muchnik degrees as the framework there are natural intermediate degrees. In-
terestingly, one of these natural examples is based on random reals. One should
note that at least one elementary cellular automaton, known as rule 30, ex-
hibits strong pseudo-random behavior and is in fact used as the default random
number generator in the computer algebra system Mathematica, see [27]. It is
tempting to speculate that the classification of the orbits of rule 30, on suffi-
ciently general types of configurations, might provide another natural source of
intermediate behavior. In particular almost periodic configurations might suffice
for this purpose.

References

1. J. T. Baldwin and S. Shelah. On the classifiability of cellular automata. Theoretical
Computer Science, 230(1-2):117–129, 2000.

2. C. H. Bennett. Logical reversibility of computation. IBM journal of Research and
Development, pages 525–532, 1973.

3. C. H. Bennett. Time/space trade-offs for reversible computation. SIAM Journal
on Computing, pages 766–776, 1989.

4. K. Culik and Sheng Yu. Undecidability of CA classification schemes. Complex
Systems, 2(2):177–190, 1988.

Universality and Cellular Automata 59

5. M. Davis. A note on universal Turing machines, pages 167–175. Princeton Uni-
versity Press, 1956.

6. M. Davis. The definition of universal Turing machines. Proc. of the American
Mathematical Society, 8:1125–1126, 1957.

7. K. M. Evans. Is Bosco’s rule universal? In MCU’04, Sankt Petersburg, 2004.
8. R. M. Friedberg. Two recursively enumerable sets of incomparable degrees of

unsolvability. Proc. Natl. Acad. Sci. USA, 43:236–238, 1957.
9. L. Harrington and S. Shelah. The undecidability of the recursively enumerable

degrees. Bull. Amer. Math. Soc., 6:79–80, 1982.
10. Y. Lecerf. Machine de Turing réversible. Insolubilité récursive en n ∈ N de

l’équation u = θnu, où θ est un “isomorphisme de codes”. C. R. Acad. Sci. Paris,
257:2597–2600, 1963.

11. M. Lerman. Degrees of Unsolvability. Perspectives in Mathematical Logic. Springer
Verlag, 1983.

12. K. Morita. Reversible cellular automata. J. Information Processing Society of
Japan, 35:315–321, 1994.

13. K. Morita and M. Harao. Computation universality of 1 dimensional reversible
(injective) cellular automata. Transactions Institute of Electronics, Information
and Communication Engineers, E, 72:758–762, 1989.

14. A. A. Muchnik. On the unsolvability of the problem of reducibility in the theory
of algorithms. Dokl. Acad. Nauk SSSR, 108:194–197, 1956.

15. J. C. Shepherdson. Machine configuration and word problems of given degree of
unsolvability. Z. f. Math. Logik u. Grundlagen d. Mathematik, 11:149–175, 1965.

16. R. I. Soare. The Friedberg-Muchnik theorem re-examined. Canad. J. Math.,
24:1070–1078, 1972.

17. R. I. Soare. Recursively Enumerable Sets and Degrees. Perspectives in Mathemat-
ical Logic. Springer Verlag, 1987.

18. K. Sutner. A note on Culik-Yu classes. Complex Systems, 3(1):107–115, 1989.
19. K. Sutner. Classifying circular cellular automata. Physica D, 45(1–3):386–395,

1990.
20. K. Sutner. De Bruijn graphs and linear cellular automata. Complex Systems,

5(1):19–30, 1991.
21. K. Sutner. Cellular automata and intermediate reachability problems. Fundamen-

tae Informaticae, 52(1-3):249–256, 2002.
22. K. Sutner. Almost periodic configurations on linear cellular automata. To appear,

2003.
23. K. Sutner. Cellular automata and intermediate degrees. Theoretical Computer

Science, 296:365–375, 2003.
24. K. Sutner. The complexity of reversible cellular automata. Theoretical Computer

Science, 325(2):317–328, 2004.
25. T. Toffoli and N. Margolus. Injective cellular automata. Physica D, 45(1–3):386–

395, 1990.
26. S. Wolfram. Computation theory of cellular automata. Comm. Math. Physics,

96(1):15–57, 1984.
27. S. Wolfram. The Mathematica Book. Cambridge University Press, 2002.
28. S. Wolfram. A New Kind of Science. Wolfram Media, 2002.

Leaf Language Classes

A Survey

Klaus W. Wagner

Institut für Informatik
Julius-Maximilians-Universität Würzburg
wagner@informatik.uni-wuerzburg.de

Abstract. The theory of leaf language classes is a fruitful field of re-
search which has been developed since the beginning of the nineties. The
leaf language model, in which one language (or a pair of languages) de-
fines a class of languages, allows a uniform definition and treatment of
many complexity classes. The results of this area give new insights into
the structure of complexity classes and their relation to other fields of
Theoretical Computer Science.

1 Introduction

Complexity classes based on nondeterministic computations have been studied
since the beginning of the theory of compuational complexity. Such a complexity
class is defined by a class of nondeterministic machines (e.g., nondeterministic
polynomial time Turing machines) and a notion of acceptance. Since a nondeter-
ministic machine can have many computation paths on a given input, the notion
of acceptance has to make precise how the outcomes of these computation paths
determine whether the input is accepted or not. In the simplest case of nonde-
terministic acceptance there has to be at least one accepting computation path,
in the case of probabilistic acceptance there have to be more accepting paths
than rejecting paths. During the last forty years more and more different and
sophisticated notions of acceptance have been introduced and investigated.

Only at the beginning of the nineties a convincing step to unify these many
different approaches was made. Bovet, Crescenzi, and Silvestri [BCS91, BCS92]
and independently Vereshchagin [Ve93] developed a method to define notions
of acceptance for nondeterministic machines which became later on known as
the leaf language approach. (In [Vo03] it is mentioned that Papadimitriou and
Sipser used this method in their lectures on complexity theory already around
1979.)

The essence of this method can be desribed easily. Consider a nondetermin-
istic polynomial time Turing machine M . On input x, every computation path
of M produces a symbol from a finite alphabet Σ. Considering the computation
paths of M on x in lexicographical order the produced symbols build a finite
sequence βM (x) ∈ Σ∗, the leaf word of M on x. A language L ⊆ Σ∗ defines the
leaf language class Leafpu(L) of all languages A for which there exists a nonde-
terministic polynomial time Turing machine M such that x ∈ A ⇔ βM (x) ∈ L

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 60–81, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Leaf Language Classes 61

for every x. In this sense one obtains immediately NP = Leafpu(0
∗1(0 ∪ 1)∗) and

PP = Leafpu({x : x ∈ {0, 1}∗ and there are more 1’s than 0’s in x}). Also less
obvious characterizations of complexity classes like PNP = Leafpu((0∪1∪2)∗10∗)
can be proven.

Restricting in the above definiton the class of machines to such with balanced
computation trees one obtains the balanced leaf language classes Leafpb(L) which
might differ from the unbalanced classes as can be exemplified by Leafpb(Lmid) =
P and Leafpu(Lmid) = PPP where Lmid =def {x1y : x, y ∈ {0, 1}∗ ∧ |x| = |y|}.
Restricting the class of machines to such with leaf words from a given language
one can describe so-called promise complexity classes like BPP and UP. In fine,
it turns out that practically every complexity class considered so far can be
described by leaf languages.

The leaf language approach to define complexity classes has proven to be
very fruitful over the last dozen of years. Here are some facts:

– All leaf language classes share some common properties. To prove these
properties for a given class it is sufficient to show that this class can be
described by a leaf language.

– The inclusion between two leaf language classes under every relativization
is equivalent to a certain type of reducibility between the corresponding leaf
languages. This can be used to shorten dramatically many oracle separation
proofs in complexity theory.

– The study of classes defined by regular leaf languages has shown some very
unexpected and interesting connections between the algebraic properties of
leaf languages and the position of the corresponding leaf language classes in
the landscape of complexity classes.

This paper surveys the (in my understanding) most important results on
leaf language classes. However, a certain restriction is enforced here by the page
restriction of this paper. It should be mentioned that [Vo99] and [Vo03] are
further survey papers on leaf language classes. They differ from our survey in the
choice and presentation of the results. Also, Heribert Vollmer’s Leaf Language
Homepage http://www.thi.uni-hannover.de/forschung/leafl/ is a valuable source
for this field of research.

In Section 2 we introduce the complexity theoretic notations used in this
paper. In Section 3 we give the main definitions on leaf language classes, we
give some examples of leaf language characterizations of well-known complexity
classes, and we state some basic properties of leaf language classes. In Section 4
we consider the family of all leaf language classes and its structure. Character-
izations of this family and some of its subfamilies are given. For example, the
family of all classes Leafpb(L) coincides with the family of all classes which are
closed under polynomial time many-one reducibility and join and which have
≤p

m-complete languages. Further, we give an impression how big the variety of
leaf language classes is: Every class of the boolean hierarchy, the polynomial
hierarchy and the modulo hierarchy over a leaf language class is again a leaf
language class.

62 K.W. Wagner

In Section 5 we present results on classes with regular leaf languages. It turns
out that there are interesting connections between the algebraic properties of leaf
languages and the position of the corresponding leaf language classes (complexity
classes) within PSPACE. In particular, the classes of the dot-depth hierarchy on
the leaf language side correspond to the classes of the polynomial time hierarchy
on the side of the leaf language classes. The smallest classes definable by regular
leaf languages are exhibited. In Section 6 other classes of leaf languages are
considered, in particular time, space, and circuit complexity classes.

In Section 7 Bovet, Crescenzi, Silvestri, and Vereshchagin’s pioneering result
on relativized leaf language classes is given. The inclusion between two balanced
leaf language classes under every relativization is equivalent to the so-called
polylogtime many-one reducibility between the corresponding leaf languages. A
similar result for unbalanced leaf language classes is presented here for the first
time.

In Section 8 we consider results on a leaf language model based on logarithmic
space rather than polynomial time and on a leaf language model which defines
classes of functions rather than classes of languages. In Section 9 we present a
new extension of the leaf language model by which recursion theoretic classes
can be defined by simple leaf languages, for example the classes of the arithmetic
hierarchy. In Section 10 we discuss other approaches to define complexity classes,
and we compare them with the leaf language approach.

2 Notations of Complexity Classes

Since many different complexity classes are used in this paper we will give here
a brief summary of the corresponding notations.

For any function t : N → N such that t(n) ≥ n, let DTIME(t) and
NTIME(t) be the classes of languages which can be accepted by determinis-
tic and nondeterministic, resp., Turing machines within time t. For any func-
tion s : N → N such that s(n) ≥ logn, let DSPACE(s) and NSPACE(s)
be the classes of languages which can be accepted by deterministic and non-
deterministic, resp., Turing machines within space s. For classes F ⊆ NN

define DTIME(F) =def

⋃
t∈F DTIME(t), NTIME(F) =def

⋃
t∈F NTIME(t),

DSPACE(F) =def

⋃
s∈F DSPACE(s), and NSPACE(F) =def

⋃
s∈F NSPACE(s).

Define Pol =def {nk : k ≥ 1} and 2Pol =def {2nk

: k ≥ 1}. In particular,
we set P =def DTIME(Pol), NP =def NTIME(Pol), L =def DSPACE(log),
NL =def NSPACE(log), and PSPACE =def DSPACE(Pol). For functions f, g ∈ N
define (f ◦ g)(n) =def f(g(n)) for n ∈ N, and for classes F ,G ⊆ NN define
F ◦ G =def {f ◦ g : f ∈ F ∧ g ∈ G}.

The class PP is defined as the class of languages which can be accepted by
probabilistic polynomial time Turing machines, and the class BPP is defined as
the class of languages which can be accepted by probabilistic polynomial time
Turing machines with bounded error probability. If we consider the number of
accepting paths rather than the acceptance probability then this does not change
the class PP but in the bounded case we obtain the class BPPpath ⊇ BPP.

Leaf Language Classes 63

For a class K accepted in a certain way by machines of a certain type and
a language X , the relativized class KX is the class of languages accepted in the
same way by machines of the same type which in addition have access to X
as an oracle. Note that this general definition needs some more explanation in
special cases. For a classM of languages set KM =def

⋃
X∈MKX . In particular,

PM is the class of languages which can be accepted by deterministic Turing
machines in polynomial time with an oracle fromM. Let further PM[1] be the
class of languages which can be accepted by deterministic Turing machines in
polynomial time with one query to an oracle fromM.

Let A�B =def (A�B)∪ (B�A) denote the symmetric difference of the sets
A and B. Let A, B be languages over the finite alphabet Σ, and let a and b be
different symbols from Σ. The set A ∪· B =def aA ∪ bB is said to be the join of
the sets A and B.

Now we consider special operations on language classes. Let K and M be
classes of languages, and let k ≥ 2. We define

co-K =def {A : A ∈ K},
K ∧M =def {A ∩B : A ∈ K and B ∈M},
K ⊕M =def {A�B : A ∈ K and B ∈ M},
K∇M =def {A : ∃D(D ∈ P ∧A ∩D ∈ K ∧A ∩D ∈ M)},
∃·K =def {A : there exists a polynomial p and a B ∈ K such that

∀x(x ∈ A↔ ∃z(|z| = p(|x|) ∧ (x, z) ∈ B))},
∀·K =def {A : there exists a polynomial p and a B ∈ K such that

∀x(x ∈ A↔ ∀z(|z| = p(|x|)→ (x, z) ∈ B))},
∃!·K =def {A : there exists a polynomial p and a B ∈ K such that

∀x(x ∈ A↔ |{z : |z| = p(|x|) ∧ (x, z) ∈ B)}| = 1)},
U·K =def {A : there exists a polynomial p and a B ∈ K such that

∀x(x ∈ A→ |{z : |z| = p(|x|) ∧ (x, z) ∈ B}| = 1) and
∀x(x �∈ A→ |{z : |z| = p(|x|) ∧ (x, z) ∈ B}| = 0)},

Modk ·K =def {A : there exists a polynomial p and a B ∈ K such that
∀x(x ∈ A↔ |{z : |z| = p(|x|) ∧ (x, z) ∈ B}| ≡ 0(k))}.

In particular, define 1-NP =def ∃! ·P, UP =def U·P, ModkP =def Modk ·P for
k ≥ 2, and ⊕P =def Mod2·P.

The boolean hierarchy over a language class K is the smallest family of lan-
guage classes that contains K and that contains with the classesM and L also
the classes co-M and M∧ L. If K is closed under union and intersection then
every class of the boolean hierachy over K coincides with one of the classes K(k)
or co-K(k) where K(1) =def K and K(k + 1) =def K(k) ⊕ K for k ≥ 1. Notice
that K(k + 1) = co-K(k) ∧ K for k ≥ 1. Let BH =def

⋃
k≥1 NP(k).

The polynomial hierarchy over a language class K ⊇ P is the smallest family
of language classes that contains K and that contains with the class M also
the classes co-M, ∃·M, and ∀·M. We define Σp

0 =def Πp
0 =def Δp

0 =def P,
Δp

k+1 =def PΣp
k , Σp

k+1 =def ∃·Πp
k , Πp

k+1 =def ∀·Σp
k for k ≥ 0, and PH =def⋃

k≥0(Σ
p
k ∪Π

p
k ∪Δ

p
k). This hierarchy is called the polynomial time hierarchy.

The modulo hierarchy over a language class K ⊇ P is the smallest family of
language classes that contains K and that contains with the class M also the

64 K.W. Wagner

classes co-M, ∃·M, ∀·M, and Modk ·M for every k ≥ 2. Let MOD-PH be the
union of all classes of the modulo hierarchy over P. Note that every class of the
polynomial hierarchy over K is also a class of the modulo hierarchy over K, and
thus PH ⊆MOD-PH.

For k ≥ 1, let Σk-LOGTIME be the class of all languages which can
be accepted by a Σk-alternating Turing machine in logarithmic time. Such a
machine accesses the input as an oracle, it starts with an existing configu-
ration, and it alternates at most k−1 times on every computation path. Let
AC0 =def

⋃
k≥1 Σk-LOGTIME. Alternatively, AC0 is the class of all languages

which can be accepted by uniform unbounded fan-in {∧,∨,¬}-circuits of polyno-
mial size and constant depth. Let NC1 be the class of all languages which can be
accepted by an alternating Turing machine in logarithmic time. Alternatively,
NC1 is the class of all languages which can be accepted by uniform bounded
fan-in {∧,∨,¬}-circuits of polynomial size and logarithmic depth.

The polynomial time many-one reducibility is denoted by ≤p
m.

For more details on complexity classes the reader is referred to [BDG88],
[BDG90], [Pa94], and [Aa04].

3 Leaf Language Classes, Examples and Basic Properties

In this section we introduce the notion of leaf language classes [BCS91, Ve93], we
give some examples of leaf language characterizations of well-known complexity
classes, and we state some basic properties of leaf language classes.

Let M be a nondeterministic polynomial time machine that, in every step,
splits a computation path into at most two computation paths. Hence a compu-
tation path of M on input x can be described by a word from {0, 1}∗. Let the non-
deterministic polynomial time machine M produce on every computation path z
on input x a symbol M(x, z) from a finite alphabet Σ. Let r1, r2, . . . , rk ∈ {0, 1}∗
be the computation paths of M on input x in lexicographical order (≤). The leaf
word of M on input x is defined as βM (x) =def M(x, r1)M(x, r2) . . .M(x, rk).

A machine is called balanced if for every input x there exists an m ≥ 0 and an
r ∈ {0, 1}m such that {s : s ∈ {0, 1}m ∧ s ≤ r}·{0, 1} ∪ {s : s ∈ {0, 1}m ∧ s > r}
is the set of all computation paths of M on x.

We define the leaf language classes Leafpu(L1|L2) (unbalanced model) and
Leafpb(L1|L2) (balanced model) as follows. If L1 and L2 are languages over a
finite alphabet Σ such that L1, L2 �∈ {∅, {ε}} and L1 ∩ L2 = ∅ then we call
(L1, L2) a pair of leaf languages. For a pair (L1, L2) of leaf languages and a set
A ⊆ Δ∗ we define

A ∈ Leafpu(L1|L2)⇔def there exists a nondeterministic polynomial time
machine M such that, for every x ∈ Δ∗,
x ∈ A→ βM (x) ∈ L1 and x �∈ A→ βM (x) ∈ L2,

A ∈ Leafpb(L1|L2)⇔def there exists a balanced nondeterministic polyno-
mial time machine M such that, for every x ∈ Δ∗,
x ∈ A→ βM (x) ∈ L1 and x �∈ A→ βM (x) ∈ L2.

Leaf Language Classes 65

If L is a language over a finite alphabet and Σ is the smallest alpha-
bet such that L ⊆ Σ∗ then we define L =def Σ∗ � L. If L,L �∈ {∅, {ε}}
then we call L a leaf language, and we define Leafpu(L) =def Leafpu(L|L) and
Leafpb(L) =def Leafpb(L|L). For a class K of languages we set Leafpu(K) =def⋃

L∈K Leafpu(L) and Leafpb(K) =def

⋃
L∈K Leafpb(L). We use the following con-

vention: If Leafp(L1|L2) is used in a statement then this statement is valid for
Leafpu(L1|L2) and Leafpb(L1|L2), and if Leafp(L) is used in a statement then this
statement is valid for Leafpu(L) and Leafpb(L).

The classes of type Leafpb(L1|L2) are also called semantic classes or promise
classes (since every machine M accepting a language from Leafpb(L1|L2) fulfills
the promise that βM (x) ∈ L1 ∪ L2 for every input x), and the classes of type
Leafp(L) are also called syntactic classes or complementary classes.

As examples let us consider leaf language characterizations of well-known
complexity classes. For ε ∈ (0, 1), let L<ε (L>ε) be the set of all words from
{0, 1}∗ in which the number of 1’s is not greater (not less, resp.) than ε · |x|.
Further, let Lmid =def {x1y : x, y ∈ {0, 1}∗ ∧ |x| = |y|}.

Theorem 1.
1. Leafp(0∗1(0 ∪ 1)∗) = NP
2. Leafp(0∗1(0 ∪ 1)∗2∗| 0∗2∗3(2 ∪ 3)∗) = NP ∩ co-NP
3. Leafp(0∗10∗| 0∗) = UP
4. Leafp(0∗10∗| 0∗20∗) = UP ∩ co-UP
5. Leafp(0∗10∗) = 1-NP
6. Leafp(00∗ ∪ 10∗1(0 ∪ 1)∗) = PNP[1]
7. Leafp((0 ∪ 1 ∪ 2)∗10∗) = PNP

8. Leafp((0∗10∗1)∗0∗) = ⊕P
9. Leafpb((11)∗) = P and Leafpu((11)∗) = ⊕P

10. Leafp(L>1/2) = PP
11. Leafpb(Lmid) = P and Leafpu(Lmid) = PPP

12. Leafpb(L>2/3|L<1/3) = BPP, Leafpu(L>2/3|L<1/3) = BPPpath.

The leaf words of a balanced polynomial time machine can also be given by
two polynomial time computable functions. This provides the following charac-
terization of Leafpb(L1|L2).

Theorem 2. Let (L1, L2) ⊆ (Σ∗)2 be a pair of leaf languages, and let A ∈ Δ∗.
A ∈ Leafpb(L1|L2) ⇔ there exist polynomial time computable h : Δ∗ → N

and g : Δ∗ × N→ Σ such that for all x ∈ Δ∗,
x ∈ A → g(x, 0)g(x, 1)g(x, 2) . . . g(x, h(x)) ∈ L1 and
x �∈ A→ g(x, 0)g(x, 1)g(x, 2) . . . g(x, h(x)) ∈ L2.

The next theorem is about the relations between the balanced and the un-
balanced leaf language classes. A pair (L1, L2) ⊆ (Σ∗)2 of leaf languages is
paddable if there exists an a ∈ Σ such that for all x, y ∈ Σ∗ there holds
xy ∈ L1 ↔ xay ∈ L1 and xy ∈ L2 ↔ xay ∈ L2. A leaf language L ⊆ Σ∗

is paddable if there exists an a ∈ Σ such that for all x, y ∈ Σ∗ there holds
xy ∈ L↔ xay ∈ L.

66 K.W. Wagner

Theorem 3. Let (L1, L2) be a pair of leaf languages.

1. Leafpb(L1|L2) ⊆ Leafpu(L1|L2) ⊆ Leafpb(L1|L2)PP.
2. If (L1, L2) is paddable then Leafpb(L1|L2) = Leafpu(L1|L2).

The difference between the balanced and the unbalanced case can be really
considerable. This can be the difference between P and PPP as exemplified by
Theorem 1.11. Notice that PPP includes all the polyomial time hierarchy. This
difference can be explained as follows: Given a bit position in βM (x), one can
easily compute the computation path of a balanced machine M on x which
produces this bit. For an unbalanced machine this is a counting problem, i.e.,
this needs oracle queries to a PP set. For other examples where the balanced
and the unbalanced leaf language classes for the same leaf language differ see
Theorem 1.9, Theorem 19 and the remark after Theorem 17.

The class P is the minimal class which can be described by leaf languages.

Proposition 1. Let (L1, L2) be a pair of leaf languages.

1. Leafp(L1|L2) ⊇ P.
2. If L1 or L2 is finite then Leafp(L1|L2) = P.

Problem. The regular languages L such that Leafpu(L) = P and Leafpb(L) = P
are described in Corollary 2 and Corollary 3, resp. Theorem 1.11 shows that there
exist non-regular languages L such that Leafpb(L) = P. Is there a non-regular
language L such that Leafpu(L) = P? If not, are there non-regular languages L1

and L2 such that Leafpu(L1|L2) = P?

Proposition 2. [Bo04]

1. If (L1, L2) is paddable then Leafp(L1|L2) ⊇ UP ∩ co-UP.
2. If L is paddable then Leafp(L) ⊇ UP or Leafp(L) ⊇ co-UP.

Problem. Theorem 1.4 shows that Proposition 2.1 cannot be improved. On
the other hand, we conjecture that Proposition 2.2 can be improved. This is
because Leafp(L) = UP implies by Theorem 4.5 that UP has complete problems.
However, there are oracles relative to which UP has no complete problems. Can
UP and co-UP be replaced with larger classes in Proposition 2.2?

All leaf language classes share some basic properties (for the balanced case
see [BCS91]). A class K of languages is recursively presentable if there exists a
recursive set A such that K = {{x : (i, x) ∈ A} : i ∈ N}.

Theorem 4. Let (L1, L2) be a pair of leaf languages, and let L be a leaf
language.

1. Leafp(L1|L2) is closed under ≤p
m-reducibility.

2. Leafp(L1|L2) is closed under join.
3. Leafp(L1|L2) is countable.
4. If L1 and L2 are recursive then Leafp(L1|L2) is recursively presentable.
5. Leafp(L) has ≤p

m-complete sets.

Leaf Language Classes 67

In fact, the leaf language classes of type Leafpb(L) are the only balanced leaf
language classes which have ≤p

m-complete sets.

Theorem 5. [BS97] Let (L1, L2) be a pair of (recursive) leaf languages.
The class Leafpb(L1|L2) has a ≤p

m-complete set if and only if there exists a (re-
cursive) language L such that Leafpb(L1|L2) = Leafpb(L).

As a ≤p
m-complete language for Leafp(L) a succinct version of L (via descrip-

tion by circuits) can be chosen. For the balanced case this is shown in [BL96]
and [Ve98].

4 The Familiy of Leaf Language Classes

In this section we will get an impression about the structure of the most im-
portant families of leaf language classes. For a class K of languages we define
Lp

u(K) =def {Leafpu(L1|L2) : (L1, L2) ∈ K2 is a pair of leaf languages} and the
“complementary” family Cp

u(K) =def {Leafpu(L) : L ∈ K is a leaf language}.
Let ALL, REC, and PAD be the classes of all, all recursive and all paddable,
resp., languages. Set Lp

u =def Lp
u(ALL) and Cp

u =def Cp
u(ALL). In the same

way we define Lp
b(K), Cp

b(K), Lp
b, and Cp

b . Because of Theorem 3 we have
Lp

u(PAD) = Lp
b(PAD) and Cp

u(PAD) = Cp
b(PAD).

Converting in a sense Theorem 4 one gets complete characterizations of these
families of balanced leaf language classes.

Theorem 6. [BS97]
1. Lp

b = {K : K is countable and is closed under join and ≤p
m}

2. Cp
b = {K : K has ≤p

m-complete sets and is closed under ≤p
m}

3. Lp
b(REC)={K : K is recurs. presentable and is closed under join and ≤p

m}
4. Cp

b(REC) = {K : K has recurs. ≤p
m-complete sets and is closed under ≤p

m}

The following theorem clarifies the algebraic nature of some families of leaf
language classes. Notice that, if K,M⊇ P are closed under ≤p

m, then K∇M =
{A : there exists B ∈ K and C ∈ M such that A ≤p

m B ∪· C}.

Theorem 7. 1. [Bo94b] (Lp
b,⊆) and (Lp

b(REC),⊆) are distributive lattices.
2. [BS97] (Cp

b ,⊆) and (Cp
b(REC),⊆) are distributive upper semi-lattices.

The least upper bound and the greatest lower bound (if any) are given by the
operations ∇ and ∩, resp.

Leaf language classes of type Leafpb(L1|L2) can be characterized as intersec-
tions of leaf language classes of type Leafpb(L).

Theorem 8. [BS97] Lp
b = Cp

b ∧ C
p
b and Lp

b(REC) = Cp
b(REC) ∧ Cp

b(REC)

Problem. Are Theorem 6, Theorem 7, and Theorem 8 also valid for unbalanced
leaf language classes?

The following theorem shows that many operations on language classes can
be “modelled” with the corresponding leaf languages.

68 K.W. Wagner

Theorem 9. Let (L1, L
′
1) ⊆ (Σ∗

1)2 and (L2, L
′
2) ⊆ (Σ∗

2)2 be pairs of leaf
languages such that Σ1 ∩Σ2 = ∅.
1. co-Leafp(L1|L′

1) = Leafp(L′
1|L1).

2. [BCS91] Leafp(L1|L′
1) ∩ Leafp(L2|L′

2) = Leafp(L1L2|L′
1L

′
2).

3. Leafp(L1|L′
1)∇Leafp(L2|L′

2) = Leafp(L1 ∪ L2|L′
1 ∪ L′

2) and
Leafp(L1)∇Leafp(L2) = Leafp(L1 ∪· L2).

4. Leafp(L1|L′
1)⊕ Leafp(L2|L′

2) = Leafp(L1L
′
2 ∪ L′

1L2|L1L2 ∪ L′
1L

′
2).

5. PLeafp(L1|L′
1)[1] = Leafp(L1|L′

1)⊕ P = Leafp(L1 ∪· L′
1|L′

1 ∪· L1) and
PLeafp(L1)[1] = Leafp(L1)⊕ P = Leafp(L1 ∪· L1).

One can use the results of Theorem 9 and Theorem 6 to obtain the first two
statements of the following theorem about closure properties of some families
of leaf language classes. We define that the operation P• applied to a class K
results in PK, analogously for P•[1].

Theorem 10. 1. If the class K of languages is closed under union, concatena-
tion, and iteration then the classes Lp

b(K) and Lp
u(K) are closed under the

operations co-, ⊕, ∩, ∇, P•[1], ∃, ∀, and Modk for k ≥ 2, and the classes
Cp
b(K) and Cp

u(K) are closed under the operations co-, ∇, P•[1], ∃, ∀, and
Modk for k≥2. This applies, besides others, to K=ALL,REC,REG,PAD.

2. The families Cp
b and Lp

b(PAD) are closed under ⊕.
3. [BCS91] The families Lp

b and Cp
b are closed under P•.

4. [Tr02] If Leafpu(L1|L′
1) is closed under positive polynomial time tt-reducibility

then there exists a pair (L3, L
′
3) such that P∃·Leafpu(L1|L′

1) = Leafpu(L3|L′
3). If

Leafpu(L1|L′
1) is complementary then Leafpu(L3|L′

3) is complementary too.

Problem. Which is the status of the families not mentioned in Theorem 10.1-3?

In [BCS92] it is shown that there exist pairs (L1|L′
1) and (L2|L′

2) of leaf
languages such that Leafp(L1|L′

1) ∪ Leafp(L2|L′
2) is not a leaf language class.

Strong evidence for this fact is given by the leaf language classes NP and co-NP.
If NP ∪ co-NP would be a leaf language class then NP = co-NP [Bo04].

From Theorem 10 one obtains the following.

Corollary 1. 1. For every pair (L1, L
′
1) of leaf languages and every class

K of the modulo hierarchy over Leafp(L1|L′
1) or the boolean hierarchy

over Leafp(L1|L′
1) there exists a pair (L2, L

′
2) of leaf languages such that

Leafp(L2|L′
2) = K.

2. For every leaf language L1 and every class K of the modulo hierarchy over
Leafp(L1) there exists a leaf language L2 such that Leafp(L2) = K.

3. For every paddable leaf language L1 and every class K of the boolean
hierarchy over Leafp(L1) there exists a leaf language L2 such that
Leafp(L2) = K.

4. For every K ∈ {NP(k) : k ≥ 1}∪{Σp
k : k ≥ 1}∪{Πp

k : k ≥ 1}∪{Δp
k : k ≥ 1}

and every class K from the modulo hierarchy over P there exists a regular,
paddable language L such that Leafp(L) = K.

Leaf Language Classes 69

5 Regular Leaf Languages

Which classes can be defined by regular leaf languages? Which is the largest
such class? The latter questions is answered by the following theorem. Let A5

be the group of even permutations of (1, 2, 3, 4, 5), and let a1 be the identical
permutation of (1, 2, 3, 4, 5). Obviously, the language

M5 =def {p1p2 . . . pm : m ≥ 1 ∧ p1, p2, . . . , pm ∈ A5 ∧ p1·p2·. . .·pm = a1}
is regular. Let REG denote the class of all regular languages.

Theorem 11. [HLSVW93] Leafp(M5) = Leafp(REG) = PSPACE.

Which regular leaf languages describe the class PSPACE? This can be an-
swered by looking at certain algebraic properties of their syntactic monoids.
(For a survey on the connections between languages, monoids, and finite model
theory see [Pi96].) Notice that it is a widely believed conjecture that MOD-PH
is a proper subclass of PSPACE. Hence Statement 1 and Statement 2 of the
following theorem have a dichotomic character.

Theorem 12. [HLSVW93]

1. If the syntactic monoid of L is not solvable then Leafp(L) = PSPACE.
2. If the syntactic monoid of L is solvable then Leafp(L) ⊆ MOD-PH.
3. If the syntactic monoid of L is aperiodic then Leafp(L) ⊆ PH.

There is an interesting correspondence between classes of languages with an
aperiodic syntactic monoid and the classes of the polynomial time hierarchy.
The syntactic monoid of L is aperiodic if and only if L is starfree (Schützen-
berger 1965). The class SF of starfree languages is defined as the smallest class of
languages which containes all finite languages and which is closed under union,
complementation, and concatenation. Two so-called dot-depth hierarchies within
the class of starfree languages have been studied intensively. Roughly speaking,
the levels of these hierarchies are defined by the number of alternations between
concatenations and boolean set operations in the generation of a starfree lan-
guage. For a class K, let BC(K) be the boolean closure of K, i.e., the closure of
K under union and complementation, and let Pol(K) be the closure of K under
union and concatenation. The Cohen-Brzozowski hierarchy (Cohen and Brzo-
zowski 1971) consists of the classes Bk/2 for k ≥ 0 and the Straubing-Thérien
hierarchy (Straubing and Thérien 1981) consists of the classes Lk/2 for k ≥ 1.
These classes are defined by
Bk/2 =def

⋃
A finite alphabet BA

k/2 Lk/2 =def

⋃
A finite alphabetLA

k/2

BA
0 =def {{w} : w ∈ A∗}∪

∪{wA∗v : w, v ∈ A∗}
BA

1/2 =def Pol({{w} : w ∈ A∗} ∪ {A∗}) LA
1/2 =def Pol({A∗aA∗ : a ∈ A})

BA
k =def BC(Bk−1/2) LA

k =def BC(Lk−1/2)
BA

k+1/2 =def Pol(Bk) LA
k+1/2 =def Pol(Lk)

It is well known that Lk−1/2 ⊂ Bk−1/2 ⊂ Lk+1/2 and Lk ⊂ Bk ⊂ Lk+1 for
k ≥ 1, and hence

⋃
k≥1 Lk/2 =

⋃
k≥1 Bk/2 = SF. Defining L1 =def 0∗1(0 ∪ 1)∗

70 K.W. Wagner

and Lk =def {0, 1, . . . k}∗k({0, 1, . . . , k − 1}∗ � Lk−1)k{0, 1, . . . k}∗ for k ≥ 2 one
obtains Lk ∈ Lk−1/2, and in [SW04] it is shown that Lk �∈ Bk−1 for k ≥ 1.

In the leaf language concept the levels of the dot-depth hierarchies correspond
exactly to the levels of the polynomial time hierarchy.

Theorem 13. 1. [HLSVW93] Leafp(SF) = PH.
2. [HLSVW93] Leafp(B0) = P.
3. [BV98] Leafp(Lk) = Leafp(Lk−1/2) = Leafp(Bk−1/2) = Σp

k for k ≥ 1.
4. [HLSVW93] Leafp(Lk) = Leafp(Bk) = BC(Σp

k) for k ≥ 1.
5. [BSS99, BLSTT04] Leafp(Lk+1/2∩co-Lk+1/2) = Leafp(Bk+1/2∩co-Bk+1/2) =

Δp
k+1 for k ≥ 0.

In [Sch00] it is shown that Leafpu(RTL) = Leafpu(RPTL) = Δp
2 , where PLT

and RPLT are proper subclasses of B3/2∩co-B3/2 defined by restricted temporal
logic.

The correspondence between the dot-depth hierarchies on the one side and
the polynomial time hierarchy on the other side is even stronger than indicated
by the previous theorem. It applies also to the boolean hierachies over the various
levels of the polynomial time hierarchy.

Theorem 14. 1. [SW98, BKS99] Leafp(L1/2(m)) = Leafp(B1/2(m)) = NP(m)
for m ≥ 1.

2. [Se01] Leafpu(Bk−1/2(m)) = Σp
k (m) for k,m ≥ 1.

It is also shown in [Se01] that some refinements of the Bm−1/2(k) hierarchy
can be related to the corresponding refinements of the Σp

m(k) hierarchy in the
same way as in Theorem 14.

We have seen that P is the minimal class which can be defined by leaf lan-
guages. We do also know the “next larger” classes which can be defined by
regular leaf languages. Let us start with the unbalanced case.

Theorem 15. Let L be a regular language.
1. [Bo94a] Leafpu(L) = P or Leafpu(L) ⊇ NP or Leafpu(L) ⊇ co-NP or Leafpu(L) ⊇

ModpP for some prime number p.
2. [BKS99] If L ∈ B0 then Leafpu(L) = P.
3. [BKS99] If L ∈ B1/2 � B0 then Leafpu(L) = NP.
4. [BKS99] If L ∈ co-B1/2 � B0 then Leafpu(L) = co-NP.
5. [BKS99] If L ∈ SF � B1/2 then Leafpu(L) ⊇ ∀P = co-NP or Leafpu(L) ⊇

co-∃!·P.
6. [BLSTT04] If L ∈ L3/2 ∩ co-L3/2 then Leafpu(L) ⊆ BC(NP) or Leafpu(L) =

Δp
2 .

7. [Sch00] If L ∈ SF � B3/2 then Leafpu(L) ⊇ ∀·UP or Leafpu(L) ⊇ co-∃!·UP.

Let us hint at the similar structure of Statement 5 and Statement 7 which
are proved using forbidden pattern characterizations of the classes B1/2 and B3/2.
Similar results for higher classes Bk/2 could be obtained from forbidden pattern
characterizations of these classes which are unfortunately not known so far.

Leaf Language Classes 71

For the proper subclasses PLT and RPLT of B3/2 ∩ co-B3/2 (see the re-
mark after Theorem 13) the following is shown in [Sch00]. If L �∈ RTL ∩
RPTL then Leafpu(L) ⊇ Δp

2 or Leafpu(L) ⊇ Leafpu((0
∗10∗2)∗0∗) or Leafpu(L) ⊇

co-Leafpu((0
∗10∗2)∗0∗) or Leafpu(L) ⊇ ModpP for some prime number p.

Under the assumption that the polynomial time hierarchy does not collapse
one can conclude from Theorem 15 characterizations of those regular leaf lan-
guages which define the classes P, NP and co-NP, resp.

Corollary 2. [BKS99] Assume that the polynomial time hierarchy does not
collapse. Let L be a regular language.
1. Leafpu(L) = P ⇔ L ∈ B0.
2. Leafpu(L) = NP ⇔ L ∈ B1/2 � B0.
3. Leafpu(L) = co-NP ⇔ L ∈ co-B1/2 � B0.

Now we consider the balanced case. For a class K of languages, let Rplt
m (K)

be the class of languages which are ≤plt
m -reducible (see Section 7) to a language

in K.

Theorem 16. [Gl04] Let L be a regular language.
1. Leafpb(L) = P or Leafpb(L) ⊇ NP or Leafpb(L) ⊇ co-NP or Leafpb(L) ⊇ ModpP

for some prime number p.
2. If L ∈ Rplt

m (B0) then Leafpb(L) = P.
3. If L ∈ Rplt

m (B1/2) �Rplt
m (B0) then Leafpb(L) = NP.

4. If L ∈ Rplt
m (co-B1/2) �Rplt

m (B0) then Leafpb(L) = co-NP.
5. If L ∈ SF �Rplt

m (B1/2) then Leafpb(L) ⊇ co-NP or Leafpb(L) ⊇ co-1-NP.

Corollary 3. Assume that the polynomial time hierarchy does not collapse. Let
L be a regular language.
1. Leafpb(L) = P ⇔ L ∈ Rplt

m (B0).
2. Leafpb(L) = NP ⇔ L ∈ Rplt

m (B1/2) �Rplt
m (B0).

3. Leafpb(L) = co-NP ⇔ L ∈ Rplt
m (co-B1/2) �Rplt

m (B0).

Problem. From Theorem 3, Corollary 2, and Corollary 3 we obtain for every
regular paddable language L that L ∈ Rplt

m (Bk/2) implies L ∈ Bk/2 for k = 0, 1.
Is this true for every k ≥ 2?

However, the classes B0 and B1/2 are not closed under ≤plt
m -reducibility as

shown in the following theorem.

Theorem 17. 1. [Wa01] A regular language L ∈ Σ∗ is in Rplt
m (B0) if and only

if there exists an r ≥ 0 such that L is the finite union of sets w(Σr)∗v.
2. [Gl04] REG ∩Rplt

m (B1/2) = Pol(REG ∩Rplt
m (B0)).

By Theorem 17.1 we obtain that the non-starfree language (11)∗ is in
Rplt

m (B0). However, SF ∩ Rplt
m (B0) = B0 [Wa01]. The latter is not true for

Rplt
m (B1/2). It was proved in [Gl04] that, for every k ≥ 1, there exists a star-

free language Lk ∈ Rplt
m (B1/2) � Bk. For these languages the balanced and

the unbalanced leaf language classes could differ because Leafpb(Lk) = NP and

72 K.W. Wagner

Leafpb(Lk) ⊇ UΣp
k where UΣp

k is the k-the level of the UP-hierarchy defined by
UΣp

1 =def UP and UΣp
k+1 =def U·co-UΣp

k for k ≥ 1. There are oracles relative to
which UΣp

k �⊆ Σp
k−1.

For a reducibility under which all classes of the Cohen-Brzozowski hierarchy
are closed see [SW04].

In [Ga98] the classes Leafpu(L) and Leafpb(L) was investigated for regular lan-
guages L which can be accepted by finite deterministic automata with at most
three states.

6 Other Leaf Languages

So far we have looked at classes which are defined by regular leaf languages.
What happens if we choose leaf languages from other classes, in particular from
given complexity classes? Since the leaf word βM (x) of a machine M can be
exponentially longer than the input word x, one can expext a maximally ex-
ponential blowup of the complexity when going from a leaf language to the
languages accepted with this leaf language. Indeed this exponential blowup does
really happen. In particular, we have

Theorem 18. [HLSVW93] Let s ≥ log and t ≥ id.

1. Leafp(DSPACE(s)) = DSPACE(s ◦ 2Pol).
2. Leafp(NSPACE(s)) = NSPACE(s ◦ 2Pol).
3. Leafp(DTIME(t)) = DTIME(Pol ◦ t ◦ 2Pol).
4. Leafp(NTIME(t)) = NTIME(Pol ◦ t ◦ 2Pol).

Corollary 4. 1. Leafp(PSPACE) = DSPACE(2Pol).
2. Leafp(NP) = NTIME(2Pol).
3. Leafp(P) = DTIME(2Pol).
4. Leafp(L) = Leafp(NL) = Leafp(DSPACE(logk)) = PSPACE.

Because of Theorem 11 and Statement 4 of the preceding theorem we have
also Leafp(CFL) = Leafp(DCFL) = Leafp(NC1) = PSPACE.

The next theorem gives another example of the phenomenon that the bal-
anced and the unbalanced leaf language classes for the same leaf languages can
differ (unless the polynomial time hierarchy collapses). Note that Bk−1/2 ⊆
Σk-LOGTIME for k ≥ 0 and SF ⊆ AC0.

Theorem 19. [JMT94, HVW96]

1. Leafpb(Σk-LOGTIME)=Σp
k and Leafpu(Σk-LOGTIME)=(Σp

k)PP for k ≥ 0.
2. Leafpb(AC0) = PH and Leafpu(AC0) = PHPP.

In [Vo98] classes Leafpb(L) were studied where L is accepted by special circuits.

Leaf Language Classes 73

7 Relativized Leaf Language Classes

In this section we will consider relativized leaf language classes, i.e., the classes
of type Leafpu(L1|L2)X , Leafpb(L1|L2)X , Leafpu(L)X , and Leafpb(L)X . It is worth
mentioning that Theorem 4 remain valid if all leaf language classes there are
attached with a fixed oracle X [Bo94b]. The next theorem is in a way an analogue
to Theorem 5. From these theorems it follows that if a class Leafpb(L1|L2) has
a ≤p

m-complete set then the Leafpb(L1|L2)X has a ≤p
m-complete set for every

oracle X .

Theorem 20. [BCS92] A leaf language class Leafpb(L1|L2)X has a ≤p
m-complete

set for every oracle X if and only if there exists a language L such that
Leafpb(L1|L2) = Leafpb(L).

The use of oracles is an important tool in complexity theory. Several central
problems about the inclusion between complexity classes are unresolved, e.g.,
the famous problem of whether P = NP. However, it was possible to prove
that there are oracles X,Y such that PX �= NPX and PY = NPY . That means
that we cannot prove P = NP or P �= NP by using relativizable methods, i.e.,
methods which work in the same way when using additionally an oracle set.
We will present here a relatively easy to handle criterion for the fact that there
are oracles X such that Leafpb(L1|L′

1)
X �⊆ Leafpb(L2|L′

2)
X and Leafpu(L1|L′

1)
X �⊆

Leafpu(L2|L′
2)X .

To get a criterion for ∀X(Leafpb(L1|L′
1)X ⊆ Leafpb(L2|L′

2)X) we define the
polylogtime reducibility ≤plt

m . A function g : Σ∗
1 → Σ∗

2 is polylogtime computable
if there exist a k ≥ 1 such that g is computed in O(logk n) time by a Turing
machine which accesses the input as an oracle. For pairs (L1, L

′
1) and (L2, L

′
2)

of leaf languages let

(L1|L′
1) ≤plt

m (L2|L′
2)⇔def there exist polylogtime computable functions

g, h such that
x ∈ L1 → g(x, 1)g(x, 2) . . . g(x, h(x)) ∈ L2 and
x ∈ L′

1 → g(x, 1)g(x, 2) . . . g(x, h(x)) ∈ L′
2

Instead of (L1|L1) ≤plt
m (L2|L2) we also write L1 ≤plt

m L2. For example,
0∗10∗1(0 ∪ 1)∗ ≤plt

m 0∗1(0 ∪ 1)∗ but 1∗ �≤plt
m 0∗1(0 ∪ 1)∗ (1∗ taken here as a

subset of {0, 1}∗).

Theorem 21. [BCS92, Ve93] For all pairs (L1, L
′
1) and (L2, L

′
2) there holds

(L1, L
′
1) ≤plt

m (L2, L
′
2) if and only if ∀X(Leafpb(L1|L′

1)
X ⊆ Leafpb(L2|L′

2)
X).

In particular, L1 ≤plt
m L2 if and only if ∀X(Leafpb(L1)X ⊆ Leafpb(L2)X).

Corollary 5. If (L1, L
′
1) �≤plt

m (L2, L
′
2) then there exists an oracle X such that

Leafpb(L1|L′
1)

X �⊆ Leafpb(L2|L′
2)

X .

The preceding corollary can be used very elegantly to show that there are
relativized worlds in which some inclusion between complexity classes does not
hold. For example, to prove that there exists an oracle X such that co-NPX �⊆

74 K.W. Wagner

NPX (and hence PX �= NPX) it is sufficient to prove 1∗ �≤plt
m 0∗1(0 ∪ 1)∗ (1∗

taken here as a subset of {0, 1}∗). To do that assume that there exists such a
reduction. Hence a word from 1n is mapped to a word 0m−11w by the reducing
function. Because this function is polylogtime computable, not every symbol of
the input 1n can be scanned when computing the m-th symbol of 0m−11w (if n
is sufficiently large). Change a not scanned symbol of 1n from 1 to 0. This results
in word not in 1∗, but the reducing function produces nevertheless a word from
0∗1(0 ∪ 1)∗, a contradiction.

A language L is called commutative if the membership of a word x to L de-
pends only on the number of occurences of every alphabet symbol in x and not
on the order in which the symbols occur in x. For the special case of commu-
tative, paddable leaf languages the criterion L1 ≤plt

m L2 for ∀X(Leafpb(L1)X ⊆
Leafpb(L2)X) can be formulated in a much more easy and applicable way. A com-
mutative, paddable language L ⊆ {0, 1, . . . k}∗ with “padding symbol” 0 is de-
termined by the set VL =def {(n1, n2, . . . , nk) : 1n12n2 . . . knk ∈ L} of Parikh vec-
tors. Such a language L is said to be of bounded significance if there exists an m ∈
N such that (n1, n2, . . . , nk) ∈ VL ↔ (min(n1,m),min(n2,m), . . . ,min(nk,m)) ∈
VL for all n1, n2, . . . , nk ∈ N. For u, v ∈ Nk, we define the multinomial coefficient(
u
v

)
=def

∏k
i=1

(
ui

vi

)
.

Theorem 22. [CHVW98] For commutative, paddable language of bounded sig-
nificance L1 ⊆ {0, 1, . . . k}∗ and L2 ⊆ {0, 1, . . .m}∗ the following are equivalent:

(1) ∀X(Leafp(L1)X ⊆ Leafp(L2)X)
(2) L1 ≤plt

m L2

(3) there exist p1, . . . , pm : Nk → N which are positive linear combinations of
multinomial coefficients such that v ∈ VL1 ↔ (p1(v), . . . , pm(v)) ∈ VL2 .

For a commutative, paddable language L ⊆ {0, 1, . . . k}∗ define m+(L)
(m−(L)) to be the maximum natural number r such that there exist v1, v2, . . . , vr

such that v1 ≤ v2 ≤ · · · ≤ vr, v1 ∈ VL (v1 �∈ VL), and vi ∈ VL ↔ vi+1 �∈ VL

for i = 1, 2, . . . , k − 1. If there is not such a maximum natural number then
m+(L) =def m−(L) =def ∞.

Theorem 23. [CHVW98] Let L1 and L2 be commutative, paddable languages,
and let L2 be of bounded significance. If ∀X(Leafp(L1)X ⊆ Leafp(L2)X) then
m+(L1) ≤ m+(L2) and m−(L1) ≤ m−(L2).

Theorem 24. [CHVW98] For a commutative, paddable language L there holds
∀X(Leafp(L)X ⊆ NP(k)X) if and only if m+(L) ≤ k.

A similar criterion for ∀X(Leafpu(L)X ⊇ NP(k)X) is also proved in [CHVW98].
In [GKV03] a modification of Theorem 21 was proved that concerns generic

oracles. We do not give a formal definition of genericity, but, informally speaking,
a generic oracle is a typical oracle in the sense that it has all the properties that
can be enforced by a stage construction (the main technique to construct oracles
with certain desired properties). A generic oracle which separates e.g. P and NP

Leaf Language Classes 75

also separates all other complexity classes which are separated by an oracle which
is built by a stage construction. For arithmetic sets L1 and L2 the following three
statements are equivalent: (1) L1 ≤plt

m L2, (2) (Leafpb(L1)X ⊆ Leafpb(L2)X) for
every generic oracle X , and (3) (Leafpb(L1)X ⊆ Leafpb(L2)X) for some generic
oracle X .

Corollary 5 shows that if (L1, L
′
1) �≤plt

m (L2, L
′
2) then there exists an oracle X

such that Leafpb(L1|L′
1)

X �⊆ Leafpb(L2|L′
2)

X . In [BCS92] an additional condition
to (L1, L

′
1) is given such that if L1 �≤plt

m L2 then there exists an oracleX such that
Leafpb(L2|L′

2)
X is even strongly separated from Leafpb(L1|L′

1)
X , i.e., there exists

an infinite set in Leafpb(L2|L′
2)

X which has no infinite subset in Leafpb(L1|L′
1)

X .
In [BCS91] conditions are given under which Leafpb(L1|L′

1) ⊆ Leafpb(L2|L′
2)

implies Leafpb(L1|L′
1)

X ⊆ Leafpb(L2|L′
2)

X for every sparse oracle X .
In [Ve93] a polylogtime Turing reducibility ≤plt

T is defined in a natural way,
and it is shown that (L1, L

′
1)≤

plt
T (L2, L

′
2) if and only if ∀X(Leafpb(L1|L′

1)X ⊆
PLeafpb(L2|L′

2)
X

)
To get a similar criterion like the one in Theorem 21 for the unbalanced leaf

language model, i.e., a criterion for ∀X(Leafpu(L1|L2)X ⊆ Leafpu(L
′
1|L′

2)
X) a new

reducibilty is necessary: the polynomial time tree reducibility ≤ptt
m . It is based

on paths in finite trees rather than bits of words. Let Σ be a finite alphabet.
We call a triple t = (T, h,m) a Σ-tree if T ⊆ {0, 1}∗ is finite (the set of paths),
h : T → Σ, and m ∈ N such that ∀z∀u((u is an initial word of z ∧ z ∈ T) →
u ∈ T) and ∀z(z ∈ T → |z| ≤ m). Let TΣ be the set of all Σ-trees. The leaf
word of a Σ-tree t = (T, h,m) is defined as β(t) =def h(r1)h(r2) . . . h(rk) where
r1, r2, . . . , rk ∈ {0, 1}∗ are the maximal paths of t in lexicographical order.

A function f : TΣ1 → TΣ2 is called a polynomial time tree function (for short:
ptt function) if and only if there exist functions g1 : TΣ1 × {0, 1}∗×N→ {0, 1},
g2 : TΣ1 × {0, 1}∗ × N→ Σ2, and a k > 0 such that

- g1, g2 are polynomial time computable in the length of the {0, 1}∗ and N
arguments where a tree t ∈ TΣ1 is accessed as an oracle, and

- f(t) = (T ′, h′,mk) where T ′ =def {z : gt
1(z,m) = 1} and h′(z) =def g

t
2(z,m)

for every tree t = (T, h,m) ∈ TΣ1.

For L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2 , we define L1 ≤ptt
m L2 (L1 is ptt-reducible to L2)

if there exists a ptt function f : TΣ1 → TΣ2 such that β(t) ∈ L1 ↔ β(f(t)) ∈ L2

for all t ∈ TΣ1. Instead of (L1|L1) ≤ptt
m (L2|L2) we also write L1 ≤ptt

m L2.
As examples, we have (0∗10∗1)∗0∗ ≤ptt

m (11)∗ and (11)∗ �≤ptt
m 1 whereas

(0∗10∗1)∗0∗ �≤plt
m (11)∗ and (11)∗ ≤plt

m 1.

Theorem 25. [Wa04] For pairs (L1, L
′
1) and (L2, L

′
2) of leaf languages there

holds (L1, L
′
1) ≤ptt

m (L2, L
′
2) if and only if ∀X(Leafpu(L1|L′

1)
X ⊆ Leafpu(L2|L′

2)
X).

In particular, L1 ≤ptt
m L2 if and only if ∀X(Leafpu(L1)X ⊆ Leafpu(L2)X).

Corollary 6. If L1 �≤ptt
m L2 then there exists an oracle X such that

Leafpu(L1)X �⊆ Leafpu(L2)X .

In [Wa04] a similar theorem was proved also for the leaf language model
where the machines have unbalanced computation trees with ε-leaves.

76 K.W. Wagner

8 Other Leaf Language Models

In [JMT94] leaf language models are considered which rest on logarithmic space
and logarithmic time machines rather than polynomial time machines. We will
present her some of their results about the logspace leaf language model. In
the same systematics as for polynomial time machines we denote also the leaf
language classes for logspace machines but we use an upper script log. In fact,
we will need only classes Leaf log(L) because the following statements are valid
for unbalanced as well as the balanced case.

Theorem 26. [JMT94]
1. Leaf log(PSPACE) = EXPSPACE.
2. Leaf log(NP) = NEXPTIME.
3. Leaf log(P) = EXPTIME.
4. Leaf log(L) = Leaf log(NL) = Leaf log(DSPACE(logk)) = PSPACE.
5. Leaf log(CFL) = Leaf log(DCFL) = Leaf log(NC1) = PSPACE.
6. Leaf log(Σk-LOGTIME) = Σp

k for k ≥ 1.
7. Leaf log(AC0) = PH.
8. Leaf log(REG) = P.
9. Leaf log(SF) = Leaf log(Bk/2) = NL for k ≥ 1.

10. Leaf log(B0) = L.

Interestingly, the results for the polynomial time leaf language model and
the logspace leaf language model differ only for small classes. In particular the
results for regular leaf languages are clearly different (unless P = PSPACE).

As in the polynomial time case the minimal leaf language class in the logspace
model is L. Also the “next larger” such leaf languages classes are known.

Theorem 27. [Bo94a] For a regular language L there holds Leaf logu (L) = L or
Leaf logu (L) ⊇ NL or Leaf logu (L) ⊇ ModpL for some prime number p.

In [CMTV98] a leaf language model on the base of NC1 computations was
considered with leaf language classes LeafNC1

(L). The results are similar to those
for the logspace model. Simple context-free languages L were found for which
still LeafNC1

(L) = PSPACE holds true.
In [GV03] a leaf language model to compute functions was considered. Let

D be the set of all (3×3)-matrices with entries from {−1, 0, 1}. For a string
x ∈ D∗ let 〈x〉 be the result of multiplying the matrices in x in the given order.
The following result is the function analog of the bottleneck characterization of
PSPACE (Cai und Furst 1991).

Theorem 28. [GV03] A function f is computable in polynomial space if and
only if there exist a nondeterministic polynomial time machine M that computes
on every computation path a matrix from D such that

f(x) = (1 0 0)·〈βM(x)〉·
(

1
0
0

)
.

Leaf Language Classes 77

A general leaf language model for computing functions was defined and in-
vestigated in [KSV00].

In [Ko00] a leaf language model to describe classes of finite partitions was
considered.

9 Leaf Languages for Recursion-Theoretic Classes

Is it possible to define recursion-theoretic classes with simple leaf languages?
Since we understand the polynomial time hierarchy as the complexity-theoretic
analogue of the arithmetic hierarchy we look for a leaf language model in which,
analogously to Theorem 13, the classes of the Cohen-Brzozowski hierarchy gen-
erate the corresponding classes of the arithmetic hierarchy. We restrict ourselves
to the case of balanced and complementary leaf language classes.

To reflect the quantifier structure in the arithmetic hierarchy where the
quantifiers range over an infinite domain, leaf languages with finite objects like
words are not suitable. We use infinite sequences from Σωm

with m ≥ 1, i.e.,
infinite sequences of ordinality ωm over the finite alphabet Σ. Such sequences
can be represented by total functions Nm → Σ. We generalize the leaf language
concept to ωm-languages. For B ∈ Σ∗

1 and L ∈ Σωm

2 let

B ∈ Leaf rec
b (L)⇔def there exists a computable total g : Σ∗

1 × Nm → Σ2

such that x ∈ B ↔ g(x) ∈ L for all x ∈ Σ∗
1

where g(x)(i1, . . . , im) =def g(x, i1, . . . , im) for x ∈ Σ∗
1 and i1, . . . , im ∈ N.

Regular ωm-languages (m ≥ 1) are well studied (Büchi 1965, Choueka 1978,
Wojciechowski 1985, Bedon and Carton 1998). One possible definition is the fol-
lowing: An ωm-language is regular if it can be described by a monadic second
order formula with the relations <, s (successor relation), min and max. Accord-
ing to the corresponding results on starfree languages of words (Thomas 1982)
we define: An ωm-language is starfree if it can be described by a monadic first
order formula with the same relations. An ωm-language is in the class Bω,m

k−1/2

if it can be described by a monadic first order formula with the same relations
whose quantifiers have a Σk-structure. Further, let Bω,m

k =def BC(Bω,m
k−1/2) and

Bω
k/2 =def

⋃
m≥1 B

ω,m
k/2 for k ≥ 1. Finally, for k ≥ 1, let Σar

k be the k-th class of
the arithmetic hierarchy.

Theorem 29. For k ≥ 1, there holds Leaf rec
b (Bω

k−1/2) = Σar
k and Leaf rec

b (Bω
k) =

BC(Σar
k).

We conjecture that the preceding result is not valid for fixed m. For m = 1
it is definitively not valid because we can prove that

⋃
k≥1 B

ω,1
k = BC(Σar

2).
Generally, we conjecture

⋃
k≥1 B

ω,m
k = BC(Σar

2m) for m ≥ 2.
We say that the leaf set L ∈ Σωm

characterizes the m-degree of the set B
if Leaf rec

b (L) = {C : C ≤m B}. Which leaf sets characterize m-degrees? Which
m-degrees can be characterized by leaf sets? It is not hard to see that, if one
modifies the definition of Leaf rec

b (L) by omitting “total” then every leaf set L

78 K.W. Wagner

characterizes the m-degree of R(L) =def {c(r, x) : u(r, x) ∈ L} where u is a
universal function for the (n + 1)-ary computable functions.

It would be very useful to have a reducibility ≤∗ between ωn-sets such that
L1 ≤∗ L2 ⇔ Leaf rec

b (L1) ⊆ Leaf rec
b (L2).

A first idea is as follows. For L1 ⊆ Σωm

1 and L2 ⊆ Σωn

2 we define L1 ≤rec
m

L2 ⇔def there exists a total computable oracle function g such that ξ ∈ L1 ↔
gξ(0)gξ(1)gξ(2) . . . ∈ L2 for all ξ ∈ Σωm

1

Theorem 30. If L1 ≤rec
m L2 then Leaf rec

b (L1) ⊆ Leaf rec
b (L2).

Problem. Does L1 ≤rec
m L2 ⇔ Leaf rec

b (L1) ⊆ Leaf rec
b (L2) hold true or do we

need a weaker reducibility to achieve that?

10 Further General Models and the Leaf Language Model

In this section we will consider other general models to define complexity classes.
In [GP86] and [He92a] the model of locally definable acceptance types was

introduced. Let k ≥ 2, and let F be a finite set of functions over {1, 2, . . . , k}. A
nondeterministic polynomial time machine M is called an F -machine if it assigns
to every node of indegree r of its computation tree on input x an r-ary function
from F . The input is accepted if a circuit-like evaluation of the computation tree
results in 1. The class (F)P consists of all languages which can be accepted in
this way by an F -machine. For every F there holds P ⊆ (F)P ⊆ PSPACE, and
there are single finite functions f such that ({f})P = PSPACE. The connection
to the leaf language model is as follows. For every regular language L there
is a binary associative function f such that ({f})P = Leafpu(L), and for every
binary associative function f there is a regular language L such that Leafpb(L) =
Leafpu(L) = ({f})P . More results about locally definable acceptance types can
be found in [GP86, He92a, He92b, He94a, He94b, NR98, PV01]

In [BS01] the leaf language concept is generalized to operators, the dot op-
erators. For a pair (L1, L2) of leaf languages over the alphabet {0, 1} the dot
operator (L1, L2)· is defined by

A ∈ (L1, L2) · K =def there exist a B ∈ K and a polynomial time com-
putable function h such that for all x,
x ∈ A→ cB(x, 0)cB(x, 1) . . . cB(x, h(x)) ∈ L1 and
x �∈ A→ cB(x, 0)cB(x, 1) . . . cB(x, h(x)) ∈ L2.

Furthermore, for a leaf language L define L · K =def (L,L) · K. For example,
(0∗1(0∪1)∗) ·K = ∃ ·K for every class K of languages. The observation (L1, L2) ·
P = Leafpb(L1|L2) makes clear that the dot operator (L1, L2)· is a generalization
of the leaf language class Leafpb(L1|L2). It is proved that ∀K(L·K ⊆ (L1, L2)·K) if
and only if (L,L) is polylogtime monotone projection reducible to (L1, L2). This
can be considered as a generalization of Theorem 21. This model can also be used
to characterize reducibility notions. For example, there exists a language LT such
that for all languages A and B there holds A ≤p

T B ⇔ A ∈ LT · {C : C ≤p
m B}.

Many reducibilities can be characterized in such a way.

Leaf Language Classes 79

In [BV98] and [GV01] close connections between leaf language definable com-
plexity classes and classes defined by certain Lindström quantifiers were estab-
lished.

Acknowledgements. I am grateful to Bernd Borchert, Tübingen, for many
valuable remarks on preliminary versions of this survey. Also I am thankful to
Christian Glaßer and Stephen Travers, Würzburg, for the interesting discussions
about this paper.

References

[Aa04] S. Aaronson. The complexity zoo. http://www.complexityzoo.com/
[BCS91] D.P. Bovet, P. Crescenzi, R. Silvestri. Daniel P. Bovet, Pierluigi Crescenzi,

Riccardo Silvestri. Complexity classes and sparse oracles. Proc. 6th IEEE Structure
in Complexity Theory Conference, 1991, 102–108. Journal of Computer and System
Sciences 50, 1995, 382–390.

[BCS92] D.P. Bovet, P. Crescenzi, R. Silvestri. A uniform approach to define complex-
ity classes. Theoret. Comp. Sci, 104 (1992), 263–283.

[BDG88] J.L. Balcázar, J. Dı́az and J. Gabarró. Structural Complexity I, volume 11 of
EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1988.

[BDG90] J.L. Balcázar, J. Dı́az and J. Gabarró. Structural Complexity II, volume 11
of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1990.

[Bo94a] B. Borchert. On the Acceptance Power of Regular Languages. Proc. 11th
Symposium on Theoretical Aspects of Computer Science (STACS), Lecture Notes in
Computer Science 775, Springer Verlag, 1994, pp. 533-542. Final version: Theoretical
Computer Science 148, 1995, 207–225.

[Bo94b] B. Borchert. Predicate Classes, Promise Classes, and the Acceptance Power
of Regular Languages. Ph.D. thesis, Universität Heidelberg, 1994.

[Bo04] B. Borchert. Personal communication.
[BKS99] B. Borchert, D. Kuske and F. Stephan. On existentially first–order definable

languages and their relation to NP . Theor. Informatics Appl., 33 (1999), 259–269.
[BLSTT04] B. Borchert, K-J. Lange, F. Stephan, P. Tesson, D. Thérien. The dot-depth

and the polynomial hierarchy correspond on the delta levels. Technical Report 2004-
03, Wilhelm-Schickard-Institut, Universität Tübingen. To appear in the proceedings
of DLT 2004.

[BL96] B. Borchert, A. Lozano. Succinct Circuit Representations and Leaf Language
Classes are Basically the Same Concept. Information Processing Letters 58, 1996,
211–215.

[BS97] B. Borchert, R. Silvestri. A Characterization of the Leaf Language Classes.
Information Processing Letters 63, 1997, 153–158. Preliminary version: B. Borchert.
Predicate classes and promise classes, Proc. 9th Structure in Complexity Theory
Conference, 1994, 235–241.

[BS01] B. Borchert, R. Silvestri. Dot Operators. Theoretical Computer Science 262(1),
2001, 501–523.

[BV98] H.-J. Burtschick and H. Vollmer. Lindström Quatifiers and Leaf Language
Definability. Int. J. of Foundations of Computer Science, 9 (1998), 277–294.

[BSS99] B. Borchert, H. Schmitz, F. Stephan. Unpublished manuscript, 1999.
[CHVW98] K. Cronauer, U. Hertrampf, H. Vollmer and K.W. Wagner. The chain

method to separate counting classes. Theory Comput. Systems, 31 (1998), 93–108.

80 K.W. Wagner

[CMTV98] H. Caussinus, P. McKenzie, D. Thérien, H. Vollmer. Nondeterministic NC1
Computation. Journal of Computer and System Sciences 57, 1998, 200–212.

[Ga98] M. Galota, Blattsprachen und endliche Automaten. Technical Report No. 205,
University of Würzburg, Department of Computer Science, 1.

[GKV03] M. Galota, S. Kosub, H. Vollmer. Generic Separations and Leaf Languages.
to appear in Mathematical Logic Quarterly, 2003.

[Gl04] Ch. Glaßer. Counting with Counterfree Automata Electronic Colloquium on
Computational Complexity, Report TR04-011, 2004. Technical Report No. 315, Uni-
versity of Würzburg, 2004.

[GP86] L.M. Goldschlager, I. Parberry. On the Construction of Parallel Computers
from Various Bases of Boolean Functions. Theoretical Computer Science 43, 1986,
43–58.

[GV01] M. Galota, H. Vollmer. A generalization of the Büchi-Elgot-Trakhtenbrot the-
orem. Proc. 15th Computer Science Logic 2001, Lecture Notes in Computer Science
Vol. 2142, 2001, 355–368.

[GV03] M. Galota, H. Vollmer. Functions computable in polynomial space. Manuscript
2003.

[He92a] U. Hertrampf. Locally Definable Acceptance Types for Polynomial Time Ma-
chines. Proc. 9th Symposium on Theoretical Aspects of Computer Science (STACS),
Lecture Notes in Computer Science 577, Springer Verlag, 1992, 199–207.

[He92b] U. Hertrampf. Locally Definable Acceptance Types - the Three Valued Case.
1st Latin American Symposium in Theoretical Informatics, Lecture Notes in Com-
puter Science 583, Springer Verlag, 1992, 262–271.

[He94a] U. Hertrampf. Complexity Classes with Finite Acceptance Types. Proc. 11th
Symposium on Theoretical Aspects of Computer Science (STACS), Lecture Notes
in Computer Science 775, Springer Verlag, 1994, 543–553.

[He94b] U. Hertrampf. Complexity Classes Defined via k-Valued Functions. Proc. 9th
Structure in Complexity Theory Conference, 1994, 224–234.

[HLSVW93] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer and K.W. Wag-
ner. On the power of polynomial time bit-reductions, Proc. 8th Structure in Com-
plexity Theory, 1993, 200–207.

[HVW96] U. Hertrampf, H. Vollmer and K.W. Wagner. On balanced vs. unbalanced
computation trees, Math. Systems Theory 29 (1996), 411–421.

[JMT94] B. Jenner, P. McKenzie and D. Thérien. Logspace and logtime leaf languages,
9th Annual Conference on Structure in Complexity Theory 1994, 242–254. Informa-
tion and Computation, 129 (1996), 21–33.

[Ko00] S. Kosub. On NP-partitions over posets with an application to reducing the set
of solutions of NP problems. Proc. 25th Symposium on Mathematical Foundations
of Computer Science, Lecture Notes in Computer Science Vol. 1893, 2000, 467–476.

[KSV00] S. Kosub, H. Schmitz, H. Vollmer. Uniformly defining complexity classes of
functions. International Journal of Foundations of Computer Science 11(4), 2000,
525–551.

[NR98] R. Niedermeier, P. Rossmanith. Unambiguous computations and locally defin-
able acceptance types. Theoretical Computer Science 194, 1998, 137–161.

[Pa94] Ch.H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
[PV01] T. Peichl, H. Vollmer. Finite automata with generalized acceptance criteria.

Discrete Mathematics and Theoretical Computer Science 4, 2001, 179–192.
[Pi96] J.-E. Pin. Syntactic semigroups. In: G. Rozenberg and A. Salomaa (editors),

Handbook of formal languages, Volume 1. 679–746. Springer, 1996.
[Sch00] H. Schmitz. The forbidden pattern approach to concatenation hierachies. Ph.D.

Thesis, University of Würzburg 2000.

Leaf Language Classes 81

[SW98] H. Schmitz, K. Wagner. The Boolean Hierarchy over Level 1/2 of the
Straubing-Therien Hierarchy. Technical Report No. 201, University of Würzburg,
Department of Computer Science, 1998.

[Se01] V.L. Selivanov. Relating automata-theoretic hierarchies to complexity-theoretic
hierarchies. Proc. 13th Conference on Fundamentals of Computation Theory 2001,
Lecture Notes in Computer Science Vol. 2138, 2001, 323–334. Final version: Theoret.
Informatics Appl. 36 (2002), 29–42.

[SW04] V.L. Selivanov, K.W. Wagner. A reducibility for the dot-depth hierarchy. Proc.
of the 29th Intern. Symp. on Mathematical Foundations of Computer Science, Lec-
ture Notes in Computer Science Vol. 3153, 2004, 783–793.

[Tr02] St. Travers. Blattsprachen Komplexitätsklassen: Über Turing-Abschluss und
Counting-Operatoren Studienarbeit, Universität Würzburg, Dezember 2002.

[Ve93] N.K. Vereshchagin. Relativizable and non-relativizable theorems in the polyno-
mial theory of algorithms. Izvestiya Rossiiskoi Akademii Nauk, 57 (1993), 51–90 (in
Russian).

[Ve98] H. Veith. Succinct Representation, Leaf Languages and Projection Reductions.
Information and Computation 142 (1998), 207–236. Preliminary version: ”Succinct
Representation and Leaf Languages” in: Proc. 11th Annual IEEE Conference on
Computational Complexity (CCC), 1996, 118–126.

[Vo98] H. Vollmer. Relating polynomial time to constant depth. Theoretial Computer
Science 207 (1998), 159–170

[Vo99] H. Vollmer. Uniform characterizations of complexity classes. ACM SIGACT-
Newsletter 30(1), 1999, 17–27.

[Vo03] H. Vollmer. Complexity theory made easy - the formal language approach to
the definition of complexity classes. Proc. 7th Developments in Language Theory,
2003.

[Vo04] H. Vollmer. The Leaf Language Homepage.
http://www.thi.uni-hannover.de/forschung/leafl/

[Wa01] K.W. Wagner. A reducibility and complete sets for the dot-depth hierarchy.
Manuscript.

[Wa04] K.W. Wagner. New BCSV theorems. Technical Report 337, Institut für Infor-
matik, Universität Würzburg.

Computational Completeness of P Systems

with Active Membranes and Two Polarizations

Artiom Alhazov1, Rudolf Freund2, and Gheorghe Păun3

1 Research Group on Mathematical Linguistics, Rovira i Virgili University
Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain

artiome.alhazov@estudiants.urv.es

and
Institute of Mathematics and Computer Science

Academy of Sciences of Moldova
Str. Academiei 5, Chişinău, MD 2028, Moldova

artiom@math.md
2 Faculty of Informatics, Vienna University of Technology

Favoritenstr. 9, A-1040 Wien, Austria
rudi@emcc.at

3 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania

and
Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence
University of Sevilla

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
gpaun@us.es

Abstract. P systems with active membranes using only two electrical
charges and only rules of type (a) , i.e., evolution rules used in parallel in
the regions of the membrane system, and of type (c) , i.e., communication
rules sending out an object of a membrane thereby possibly changing
the polarization of this membrane, assigned to at most two membranes
are shown to be computationally complete, which improves the previous
result of this type with respect to the number of polarizations as well as
to the number of membranes. Allowing a special variant (cλ) of rules of
type (c) to delete symbols by sending them out, even only one membrane
is enough.

Keywords: computational completeness, P systems, active membranes, po-
larizations

1 Introduction

Membrane systems are biologically motivated theoretical models of distributed
and parallel computing, see [8] for a comprehensive overview and [11] for actual
developments in the area. For P systems with active membranes and polariza-
tions (charges +,−, 0 associated with the membranes, see [9]), the question of

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 82–92, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Computational Completeness of P Systems 83

removing the polarizations without diminishing their computing power was for-
mulated several times and was recently considered in various contexts (with the
polarizations replaced by various other features, such as label changing – see,
e.g., [2], [3]). Here we present another way for improving previous results: the
number of polarizations can be decreased to two, without introducing new fea-
tures. It is worth mentioning that the computational completeness is obtained
for systems with the same types of rules as in [8], hence without using membrane
division and membrane dissolution, even decreasing the number of membranes
from three (Theorem 7.2.1 in [8]) to two. It remains as an open question whether
polarizations can be completely removed.

In the following section we recall some basic notions from formal language
theory and shortly prove a special normal form for graph-controlled grammars
that we need in the proofs of the succeeding section; moreover, we introduce a
slightly more general model of P systems with active membranes and arbitrary
non-negative polarizations. In the third section we prove that P systems with
active membranes and only two polarizations are already computationally com-
plete - needing two membranes when using rules of types (a) and (c) as in the
original definition and even only one membrane when using rules of types (a)
and (cλ) ; we finish with some open questions remaining for future research.

2 Prerequisites

The set of non-negative integers is denoted by N. An alphabet V is a finite non-
empty set of abstract symbols. Given V , the free monoid generated by V under
the operation of concatenation is denoted by V ∗; the empty string is denoted by
λ, and V ∗ − {λ} is denoted by V +. By | x | we denote the length of the word x
over V. The family of recursively enumerable languages is denoted by RE; NRE
denotes the family of recursively enumerable sets of non-negative integers.

Let {a1, ..., an} be an arbitrary alphabet; the number of occurrences of a
symbol ai in x is denoted by | x |ai ; the Parikh vector associated with x with
respect to a1, ..., an is (| x |a1 , ..., | x |an) . The Parikh image of a language L
over {a1, ..., an} is the set of all Parikh vectors of strings in L. For a family
of languages FL, the family of Parikh images of languages in FL is denoted
by PsFL. A (finite) multiset 〈m1, a1〉 ... 〈mn, an〉 with mi ∈ N, 1 ≤ i ≤ n, is
represented as any string x the Parikh vector of which with respect to a1, ..., an

is (m1, ...,mn) .
In the following we will not distinguish between a vector (m1, ...,mn) , its

representation by a multiset 〈m1, a1〉 ... 〈mn, an〉 or its representation by a string
x with Parikh vector (| x |a1 , ..., | x |an) = (m1, ...,mn) .

For more notions as well as basic results from the theory of formal languages,
the reader is referred to [4] and [10].

We now also recall the definition of a graph-controlled grammar and prove a
special normal form needed later in the proofs given in this paper:

84 A. Alhazov, R. Freund, and G. Păun

A graph-controlled grammar is a construct

G = (N,T, Lab, S,R, {1} , {n})

where N denotes the set of non-terminals, T is the set of terminal symbols,
Lab = {1, ..., n} is the set of labels, S is the start symbol, R is a finite set of
rules that can be represented as a function from Lab to P × 2Lab × 2Lab, where
P denotes the set of all context-free productions over the set N of non-terminal
symbols and the set of terminal symbols T. A rule in R usually is written in
the form (i : p (i) , σ (i) , ϕ (i)) , where σ (i) is called the success field and ϕ (i) is
called the failure field of the rule labelled by i; the context-free production p (i)
is of the form A (i) → w (i) , where A (i) ∈ N and w (i) ∈ (N ∪ T)∗ . Without
loss of generality we not only assume that N∩Lab = ∅ and that there is only one
initial label (i.e., 1) and only one final label (i.e., n, with σ (n) = ϕ (n) = ∅), but
we also may assume that if a computation has reached the final label n, then the
obtained sentential form is terminal, i.e., it must not contain any non-terminal
symbol.

As a special technical detail, without loss of generality we may assume any
right-hand side w (m) to contain at most one terminal symbol. Finally, again
without loss of generality we may also assume that in the case of a string lan-
guage, the terminal symbols are generated by G exactly in the correct sequence
as they form a terminal word. All these features of a normal form for graph-
controlled grammars, for example, follow from the constructions and results
proved in [5], Theorem 6.

We now add one more feature to the normal form of graph-controlled gram-
mars given above, i.e., from such a graph-controlled grammarG we now construct
a graph-controlled grammar

G′ = (N ′, T, Lab′, S′, R′, {0} , {n + 1})

with N ′ = N ∪ {S′, F} and Lab′ = Lab ∪ {0, n+ 1, n + 2}, which has the addi-
tional feature that all failure fields and all success fields in G′ are non-empty:

First we construct the set of rules R′′ from the set of rules R in the
following way: For every rule (i : p (i) , σ (i) , ϕ (i)) in R we take the rule(
i : p (i) , σ′ (i) , ϕ (i)′

)
, where σ′ (i) = σ (i) for σ (i) �= ∅ and σ′ (i) = {n + 2}

for σ (i) = ∅ as well as ϕ′ (i) = ϕ (i) for ϕ (i) �= ∅ and ϕ′ (i) = {n + 2} for
ϕ (i) = ∅. Thus, we obtain

R′ = R′′ \ {(n : p (n) , ∅, ∅)}
∪ {(0 : S′ → SF, {1} , {1}) , (n : F → λ, {n + 1} , {n + 1})}
∪ {(n + 1 : F → F, {n + 1} , {n + 1})}
∪ {(n + 2 : F → F, {n + 2} , {n + 2})} .

We also assume the reader to be familiar with the basic ele-
ments of membrane computing, e.g., from [8] (details can be found at
http://psystems.disco.unimib.it), in particular, with P systems with active

Computational Completeness of P Systems 85

membranes. For the sake of completeness, we recall the definition of P systems
with active membranes for the case when only rules of types (a) , (b) , and (c) or
(cλ) are used; in a more general way as in the original definition, we allow the
polarizations to be arbitrary non-negative integers:

A P system system with active membranes (of degree m ≥ 1) is a construct
of the form

Π = (O,E, μ, w1, . . . , wm, e1, . . . , em, R)

where O is the alphabet of objects, E = {0, ..., n− 1} with n ≥ 1 is the set of
electrical charges (polarizations), μ is the membrane structure (with m mem-
branes, bijectively labelled with 1, 2, . . . ,m; by H we denote the set of labels
{1, 2, . . . ,m}), w1, . . . , wm are strings overO representing the multisets of objects
occurring in the m regions of μ at the beginning of the computation, e1, . . . , em

are the polarizations at the beginning assigned to the membranes 1, . . . ,m, and
R is a finite set of rules of the following forms:

(a) [a→ v]ih , a ∈ O, v ∈ O∗, h ∈ H, i ∈ E
(evolution rule, used in parallel in the region of membrane h, provided that
the polarization of the membrane is i);

(b) a []ih → [b]jh , a, b ∈ O, h ∈ H, i, j ∈ E
(communication rule, sending an object into a membrane, possibly changing
the polarization of the membrane);

(c) [a]ih → []jh b, a, b ∈ O, h ∈ H, i, j ∈ E
(communication rule, sending an object out of a membrane, possibly chang-
ing the polarization of the membrane).
We shall also consider the following variant of rule type (c):

(cλ) [a]ih → []jh b, a ∈ O, b ∈ O ∪ {λ} , h ∈ H, i, j ∈ E
(communication rule, sending an object out of a membrane or “killing” it by
sending it through the membrane, possibly changing the polarization of the
membrane).

Throughout this paper, we shall even use only communication rules [a]ih →
[]jh b with a = b or b = λ.

The rules of types (b) , (c) , and (cλ) are considered as involving the mem-
brane, hence, we assume at most one such rule to be used for each membrane
in a given step; the use of rules is maximally parallel, with the rules chosen in
a non-deterministic manner. If no rule can be applied any more in the whole
system, then we say that the computation halts. An output is associated with
a halting computation – and only with halting computations – in the form of
the objects sent into the environment during the computation; for the following
definitions, we assume ∅ ⊂ D ⊆ {a, b, c, cλ} :

– If we consider only the number of symbols sent out during a halting compu-
tation, the set of all such numbers computed by a system Π is denoted by
N(Π). By NOPm (activen, D) we denote the family of all sets N(Π) com-
puted by P systems with at most m membranes allowing for n polarizations,
using rules of the types contained in D.

86 A. Alhazov, R. Freund, and G. Păun

– If we distingish the different symbols sent out during a halting computation,
the set of all such vectors of numbers computed by a system Π is denoted by
Ps(Π). By PsOPm (activen, D) we denote the family of all sets Ps(Π) com-
puted by P systems with at most m membranes allowing for n polarizations,
using rules of the types contained in D.

– If we consider the sequence of symbols sent out during a halting computation
and interpret this sequence as a string, then the set of all such strings com-
puted by a system Π is denoted by L(Π). By LOPm (activen, D) we denote
the family of all languages L(Π) computed by P systems with at most m
membranes allowing for n polarizations, using rules of the types contained
in D.

In this paper, we will use only two polarizations, 0 and 1, and this restriction
will be indicated by writing active2 in the notations defined above.

3 Computational Completeness with Two Polarizations

Stated in the notations of this paper, Theorem 1 from [7] says that
PsOP3 (active3, {a, b, c}) = PsRE. As announced above, we here not only im-
prove this result with respect to the number of electrical charges (polarizations),
but even with respect to the number of membranes, especially when allowing
rules of type (cλ) instead of rules (c) :

Theorem 1. PsOP1 (active2, {a, cλ}) = PsRE.

Proof. We only prove that for any recursively enumerable set of vectors of non-
negative integers we can construct a P system with active membranes that
generates a set of multisets representing L by using only one membrane, two
polarizations, and rules of the types (a) and (cλ).

We start with a graph-controlled grammar

G′ = (N ′, T, Lab′, S′, R′, {0} , {n + 1})

that is in the normal form constructed in the preceding section and represents
the given recursively enumerable set L of vectors.

We now construct a P system with active membranes of degree one

Π = (O, {0, 1} , [1]1, (S, 0) (F, 0) (1, 0) , 0, RΠ)

using only two polarizations 0 and 1 and rules of the form (a) and (cλ) such that
PsP (Π) = L :

O = T ∪ {E}
∪ {(B, l) | B ∈ N ′, 0 ≤ l ≤ 3n + 1}
∪ {(m, l) | 1 ≤ m ≤ n, 0 ≤ l < 3m}
∪ {(m̄, l) , (m̂, l) | 1 ≤ m ≤ n, 3m ≤ l ≤ 3n + 1}
∪ {m′,m′′,m′′′ | 1 ≤ m ≤ n}

Computational Completeness of P Systems 87

The simulation of derivations in the graph-controlled grammar G′ by deriva-
tions in the P system Π uses a colouring technique opening a “window” of
length three for simulating the application of the rule (m : p (m) , σ (m) , ϕ (m))
currently to be applied. Basically, the labels k ∈ Lab occur in the variants (k, l) ,(
k̄, l
)
, or

(
k̂, l
)

and the non-terminal symbols B ∈ N ′ occur in the variants
(B, l) , 0 ≤ l ≤ 3n + 1.

In the following, we describe all the rules constituting RΠ ; the label m runs
from 1 to n :

– As long as membrane 1 (the skin) has polarization 0, the index l of the
non-terminal symbols B ∈ N ′ in (B, l) may be incremented:
[(B, l)→ (B, l + 1)]01 , B ∈ N ′, 0 ≤ l < 3n.

– For each m, the index l of m ∈ Lab in (m, l) is incremented until the index
3m− 3 is reached:
[(m, l)→ (m, l + 1)]01 , 0 ≤ l < 3m− 3.

– Then we check whether p (m) can be applied to the current contents of mem-
brane 1; by polarizing the membrane we first prohibit the incrementation of
the index l in the variables of the form (B, l) :
[(m, 3m− 3)→ (m, 3m− 2)E]01
In the next step, all objects (B, 3m− 2) , B ∈ N ′, in membrane 1 evolve to
(B, 3m− 1) , whereas (m, 3m− 2) evolves to (m, 3m− 1) by applying the
following rule:
[(m, 3m− 2)→ (m, 3m− 1)]01
At the same time, E passes the skin membrane thereby changing its polar-
ization from 0 to 1 :
[E]01 → []11 λ

– With the polarization of the membrane being 1, the symbols now remain
unchanged, yet – if possible – one copy of the object A (m) (i.e., the non-
terminal symbol on the left-hand side of the context-free production p (m) in
the rule labelled by m) has to pass the membrane resetting the polarization
to 0:
[(A (m) , 3m− 1)]11 → []01 λ
At the same time, the object (m, 3m− 1) evolves according to the following
rule:
[(m, 3m− 1)→ m′]11

– In the next step m′ evolves according to the polarization of the skin mem-
brane (the polarization has stored the one-bit information whether A (m)
has been present or not):
If the polarization is still 1, then m′ evolves in two further steps to m′′′,
where the symbol E generated in the first step then resets the polarization
to 0 in the second step by passing the skin membrane:
[m′ → m′′E]11 ,
[m′′ → m′′′]11 ,
[E]11 → []01 λ

88 A. Alhazov, R. Freund, and G. Păun

– As the polarization is 0 again, the symbols (B, 3m− 1) , B ∈ N ′, may evolve
to (B, 3m), whereas m′ and m′′′, respectively, evolve to different symbols
with index 3m :
[m′ → (m̄, 3m)]01
[m′′′ → (m̂, 3m)]01

– The symbols (m̄, 3m) and (m̂, 3m) until the end of a simulation cycle evolve
in the same way as the basic objects (m, l) by incrementing the second
parameter:
[(m̄, l)→ (m̄, l + 1)]01 , 3m ≤ l < 3n;
[(m̂, l)→ (m̂, l + 1)]01 , 3m ≤ l < 3n.

– At the end of a complete cycle, we finally extract the information stored in
the symbols m̄ and m̂, respectively, and start a new cycle:
[(B, 3n)→ (B, 3n+ 1)]01 and
[(B, 3n+ 1)→ (B, 0)]01 for all B ∈ N ′;
[(m̂, 3n)→ (m̂, 3n + 1)]01 and
[(m̄, 3n)→ (m̄, 3n + 1)h (w (m))]01 , respectively, where
h : N ′ ∪ T → (N ′, 3n+ 1) ∪ T is the morphism with
h (B) = (B, 3n+ 1) for all B ∈ N ′ and h (a) = a for all a ∈ T ;
observe that due to our assumptions about G′, w (m) (i.e., the right-hand
side of the context-free production p (m) in the rule labelled by m) contains
at most one terminal symbol, hence, also h (w (m)) contains at most one ter-
minal symbol a, which may leave the skin membrane by using the following
rule:
[a]01 → []01 a
The next cycle of simulating a derivation step in G′ by Π starts after the
application of one of the following rules:
[(m̄, 3n + 1)→ (k, 0)]01 for every k ∈ σ (m) \ {n + 1, n+ 2} ;
[(m̂, 3n + 1)→ (k, 0)]01 for every k ∈ ϕ (m) \ {n + 1, n + 2} .
In case that the label of the “trap” n+2 is reached then we can immediately
enter an infinite loop due to the additional symbol F still present in its
indexed variants (F, l) , 0 ≤ l ≤ 3n+ 1 :
[(m̄, 3n + 1)→ λ]01 for every m with n + 2 ∈ σ (m) ;
[(m̂, 3n + 1)→ λ]01 for every m with n + 2 ∈ ϕ (m) .

– The simulation of a derivation in G′ by Π may successfully end if we can
apply
[(n̄, 3n + 1)→ λ]01 .
Due to our assumptions for G′, after applying this rule in Π no non-terminal
symbol can appear any more (observe that by simulating the rule labelled
by n the additional symbol F has disappeared, too); hence, in case of termi-
nation we finish with an empty membrane.

The construction given above completely describes the set of rules RΠ of the
P system with active membranes Π.

From the explanations given above, it is obvious that the P system with active
membranes Π defined above exactly generates a set of multisets that represents

Computational Completeness of P Systems 89

the same set of vectors as the given graph-controlled grammar. This observation
completes the proof. �

We could also consider P systems with extensions, i.e., in the constructions
above we could read every λ there representing the empty word as a special non-
terminal symbol not being taken into account when considering the resulting
multisets; in such a case, even using only rules of the form (c) instead of rules
of the form (cλ) would already yield computational completeness in only one
membrane. Yet we do not follow this direction any further, as the related results
are obvious and directly follow from the proofs given in this section. Instead, we
prove that even with the original types of rules (a) and (c) we only need one
additional membrane being only used for filtering out the non-terminal symbols
having passed the inner membrane:

Theorem 2. PsOP2 (active2, {a, c}) = PsRE.

Proof. Again we only prove PsRE ⊆ PsOP2 (active2, {a, c}) starting with a
graph-controlled grammar

G′ = (N ′, T, Lab′, S′, R′, {0} , {n + 1})

in the normal form as constructed in the preceding section which generates (a
string language representing) the given recursively enumerable set L of vectors.

We now construct a P system with active membranes of degree two

Π ′ = (O, {0, 1} , [1[2]2]1, λ, (S, 0) (F, 0) (1, 0) , 0, 0, R′
Π)

using only two polarizations 0 and 1 and rules of the form (a) and (c) which
generates (a set of multisets representing) L. The set of objects O is identical
with that one in the preceding proof.

The simulation of derivations in the graph-controlled grammar G′ by deriva-
tions in the P system Π ′ again uses the same colouring technique as described
in the previous proof; the simulation of a derivation step is carried out in mem-
brane 2 by opening a “window” of length three for simulating the application
of the rule (m : p (m) , σ (m) , ϕ (m)) currently to be applied. The non-terminal
symbols sent out through membrane 2 remain unchanged in this region enclosed
by the skin membrane. On the other hand, the terminal symbols having passed
membrane 2, in the succeeding step leave the system by immediately passing
through the skin membrane. Hence, from RΠ constructed in the preceding proof
we immediately obtain R′

Π by the following procedure:

1. in all rules of RΠ , replace label 1 by label 2, thus obtaining R′′
Π ;

2. replace each rule [α]12 → []02 λ, for some α ∈ O, from R′′
Π by [α]12 → []02 α,

thus obtaining R′′′
Π ;

3. R′
Π = R′′′

Π ∪
{
[a]01 → []01 a | a ∈ T

}
.

90 A. Alhazov, R. Freund, and G. Păun

The rules of the form [a]01 → []01 a are the only rules affecting the skin
membrane (without changing its polarity); moreover, there are no evolution rules
in region 1, i.e., the other (non-terminal) symbols coming through membrane 2
are never changed in region 1, they remain there as a kind of “garbage”.

From the construction given above, it is obvious that the P system with
active membranes Π ′ in a similar way as the P system with active membranes
Π constructed in the proof of the preceding theorem exactly generates a set of
multisets that represents the same set of vectors as the given graph-controlled
grammar, which observation completes the proof. �

The following two corollaries are immediate consequences of the two preced-
ing theorems, i.e., obviously also when considering only the number of symbols
sent out through the skin membrane without distinguishing between different
symbols we obtain the corresponding results:

Corollary 1. NOP1 (active2, {a, cλ}) = NRE.

Even when taking the original definitions from [8], we can considerably im-
prove the result stated in Theorem 7.2.1 there, which in the notations defined
in this paper says NOP3 (active3, {a, b, c}) = NRE, i.e., we can improve the
result with respect to the number of polarizations as well as to the number of
membranes:

Corollary 2. NOP2 (active2, {a, c}) = NRE.

So far, the terminal symbols – as the result of a successful computation –
have been sent out of the skin membrane without regarding the order of their
appearance; regarding the sequence of symbols sent out during a successful (i.e.,
halting) computation as a string we obtain languages:

Corollary 3. LOP1 (active2, {a, cλ}) = LOP2 (active2, {a, c}) = RE.

Proof. We only prove that any recursively enumerable language can be generated
by a P system with active membranes using only one (two) membrane(s), two
polarizations, and rules of the form (a) and (cλ) ((c)). The proof immediately
follows from Theorem 1 (Theorem 2) - due to the special feature (based on the
details of the proof of Theorem 6 in [5]) of the given graph-controlled graph
grammar in normal form being constructed in such a way that the symbols of a
terminal string are generated symbol by symbol in the same order as they form
this string. Hence, in the simulating P system the terminal symbols pass the
skin membrane (pass the second membrane of the simulating P system and one
step later are sent out through the skin membrane) in just the same sequence as
they are generated by the graph-controlled grammar. This observation already
completes the proof. �

In addition to the generative P systems with active membranes, we could
also consider the following variants:

Computational Completeness of P Systems 91

– Computing P systems with active membranes start with multisets of objects
given in a specified input membrane and then (by halting computations)
compute functions. Again similar results as those stated in Theorems 1 and 2
as well as Corollaries 1 and 2 hold true.

– Accepting P systems with active membranes accept multisets of objects given
in a specified input membrane by halting computations; now one membrane
is enough even in the case of rules of type (a) and (c), because we do not
consider any ouput, but simply accept by halting (even with an empty mem-
brane as follows from the construction in the proof of Theorem 1).

Without going into the very details of the proofs we just mention that for
computing P systems with active membranes as well as for accepting P systems
with active membranes we simulate deterministic graph-controlled grammars
(each success field and each failure field contains exactly one element). The input
values are given as multisets over an input alphabet which is considered to be a
subset of the non-terminal alphabet of the deterministic graph-controlled gram-
mar. According to the constructions given in the proofs of Theorems 1 and 2, the
simulation of the deterministic graph-controlled grammar by the corresponding
(computing, accepting) P system with active membranes is deterministic, too,
which is a very important feature in the area of P systems (e.g., see [6]).

At the end of this section, we list some problems left open despite the partly
already optimal results proved above:

– What happens if we allow only rules of the types (a) and (c) in one mem-
brane, but possibly an unbounded number of polarizations, i.e., how can we
characterize PsOP1 (activen, {a, c}) for n ≥ 1?

– How can we characterize PsOPm (active1, {a, cλ}) , m ≥ 1?
– Can we at least characterize PsOP1 (active1, {a, γ}) for γ ∈ {c, cλ}?

Acknowledgements

This paper was initiated during the Brainstorming Week on Membrane Com-
puting taking place in Sevilla during the first week of February, 2004. Even some
more detailed proofs as well as an algorithm for deterministically deciding SAT
in linear time using only two polarizations and global rules of types (a) and (c)
as well as membrane division can be found in [1].

The authors acknowledge IST-2001-32008 project “MolCoNet”. The first au-
thor is supported by the project TIC2002-04220-C03-02 of the Research Group
of Mathematical Linguistics, Tarragona; he also acknowledges the Moldovan Re-
search and Development Association (MRDA) and the U.S. Civilian Research
and Development Foundation (CRDF), Award No. MM2-3034.

92 A. Alhazov, R. Freund, and G. Păun

References

1. A. Alhazov, R. Freund, Gh. Păun: P Systems with active membranes and two
polarizations. In: Gh. Păun, A. Riscos Nuñez, A. Romero Jiménez, F. Sancho
Caparrini (Eds.): Second Week on Membrane Computing. Sevilla, Spain, Feb. 2-7,
2004. Dept. of Computer Sciences and Artificial Intelligence, Univ. of Sevilla Tech.
Report 01/2004 (2004) 20–36

2. A. Alhazov, L. Pan: Polarizationless P systems with active membranes. To appear
in Grammars (2004)

3. A. Alhazov, L. Pan, Gh. Păun: Trading polarizations for labels in P systems with
active membranes. Submitted (2003)

4. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin (1989)

5. R. Freund, C. Mart́ın-Vide, Gh. Păun: From regulated rewriting to computing
with membranes: collapsing hierarchies. Theoretical Computer Science 312 (2004)
143–188

6. R. Freund, Gh. Păun: Deterministic P systems. Submitted (2004)
7. M. Madhu, K. Krithivasan: Improved results about the universality of P systems.

Bulletin of the EATCS 76 (2002) 162–168
8. Gh. Păun: Computing with Membranes: An Introduction. Springer, Berlin (2002)
9. Gh. Paun: Computing with membranes - a variant: P systems with polarized mem-

branes. Intern. J. of Foundations of Computer Science 11, 1 (2000) 167–182 and
CDMTCS TR 098, Univ. of Auckland (1999)

10. A. Salomaa, G. Rozenberg (Eds.): Handbook of Formal Languages. Springer-Verlag,
Berlin (1997)

11. The P Systems Web Page: http://psystems.disco.unimib.it

Computing with a Distributed

Reaction-Diffusion Model

S. Bandini1, G. Mauri1, G. Pavesi2, and C. Simone1

1 Dept. of Computer Science, Systems and Communication
University of Milan–Bicocca

Via Bicocca degli Arcimboldi 8
Milan, Italy

{bandini,mauri,simone}@disco.unimib.it
2 Dept. of Computer Science and Communication (D.I.Co)

University of Milan
Via Comelico 39

Milan, Italy
pavesi@dico.unimi.it

Abstract. Reaction–diffusion models are commonly used to describe
dynamical processes in complex physical, chemical and biological sys-
tems. Applications of these models range from pattern formation or epi-
demic spreads to natural selection through ecological systems and perco-
lation systems. Reaction refers to phenomena where two or more entities
become in contact and modify their state as a consequence of this fact.
Diffusion implies the existence of a space where the involved entities are
situated and can move. The Reaction–Diffusion Machine is a compu-
tational model we previously introduced inspired by reaction diffusion
phenomena. In this work, we prove that a Deterministic Turing Machine
can be simulated by a Reaction-Diffusion Machine.

1 Introduction

Reaction–diffusion models are commonly used to describe dynamical processes in
complex physical, chemical and biological systems. Applications of these models
range from pattern formation [1] or epidemic spreads to natural selection through
ecological systems [2] and percolation systems [3]. Reaction refers to phenomena
where two or more entities (agents) become in contact and modify their state
in consequence of this fact. Diffusion implies the existence of a space where the
involved agents are situated and can move.

A computational model inspired to reaction diffusion phenomena, called
Reaction-Diffusion Machine (RDM), has been first introduced in [4] and fur-
ther developed in [5]. It allows for the simulation of complex systems in which
entities react locally with each other and with the environment, and the global
system behaviour emerges from the local behaviour of the composing entities.
In RDM the control is fully distributed. Agent behaviour is determined by a
local “computation” based on their position and sensitivity to fields as well as

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 93–103, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

94 S. Bandini et al.

on reaction and diffusion patterns characterising their type. This paper is a first
step towards the theoretical assessment of the RDM, through the comparison
with standard computational models such as deterministic Turing machines.

2 Turing Machines

Let us first recall the well–known definition of Turing machine (see for exam-
ple [6]). A deterministic one tape Turing machine (DTM) consists of a finite
state control, a read–write head, and a tape, made of a bi–infinite sequence of
tape cells numbered . . . ,−2,−1, 0, 1, 2, In addition, a DTM is characterized
by: a finite tape alphabet Σ = {σ1, . . . , σn}, which is taken as an ordered set,
and a blank symbol b not belonging to Σ; a finite set of states Q, including a
distinguished start state q0 and two distinguished final states qY and qN ; and a
state transition function δ : Q−{qY , qN}×Σ → Q×Σ×Δ, where Δ = {−1, 1}.

The input to the DTM is a string x ∈ Σ∗. The string x is written in tape
cells 1 through |x|, one symbol per cell. All other cells initially contain the blank
symbol. The DTM starts in state q0 with the tape head scanning cell 1. The
computation proceeds in a step–by–step fashion. If the current state is either qY

or qN the computation stops, and the DTM accepts x if q = qY , or rejects it if
q = qN . Otherwise, q ∈ Q − {qY , qN}, and some symbol s is in the cell being
scanned. Now, suppose that δ(q, s) = (q′, s′, Δ). The tape head erases s, writes
s′ in its place, and moves either one cell to the left if Δ = −1, or to the right
if Δ = 1. At the same time, the control changes its state from q to q′. This
completes one step of the DTM.

3 Reaction-Diffusion Machines

A Reaction–Diffusion Machine (RDM) is a tuple 〈S,F, T, C0,R〉 [5], where:

1. S is a space, represented as a connected undirected graph G = (V,E);
2. T = {τ1, . . . , τn} is a set of entity types ; a finite set of states Xτi is associated

with each type τi ∈ T ;
3. F is a vector of fields active in the space; fields are defined by:

(a) a set of values Wi associated with each field Fi ∈ F;
(b) a set of field source functions Φ = {φτ1 , . . . , φτn} associated with each

type τ ∈ T ; ∀i, function φτi : Xτi →W1∪⊥×. . .×Wk∪⊥ defines when an
entity of type τi can emit each of the fields, and the intensity of the fields
(⊥ if the field is not emitted), according to its state; the cumulative effect
of fields of the same type emitted by different sources reaching the same
node can be modeled by defining suitable field composition functions;

4. C0 is the initial configuration;
5. R is a set of rules, defining how and when entities interact.

The space of the RDM is populated by entities. An entity e is denoted by a
triple 〈p, τe, xe〉, where p ∈ V is the node where the entity is located, τe ∈ T is

Computing with a Distributed Reaction-Diffusion Model 95

the entity type, and xe ∈ Xτe is its state, belonging to the finite set of possible
states associated with its type. At any given time point, each node of the graph
contains at most one entity (or can be vacant). Entities can emit fields (according
to field source functions φi) that propagate throughout the space, can perceive
fields, according to their type and state, can react with neighboring entities
(located in adjacent nodes of the graph), and can move in the space (again, as
a consequence of the perception of fields).

The initial configuration C0 defines the entities present in the space, their
position, their type, and their state. Starting from the initial configuration, the
evolution of the RDM is governed by the set of rules R. There are four types of
rules, determining:

1. if, and how, neighboring entities interact with each other when located in
adjacent positions in the graph (reaction rules denoted by rR);

2. how fields propagate in the space (field diffusion rules, rF); that is, the
intensity of a field can change according to the distance in the space from
the position of the emitting entity, and the initial emission value;

3. how entities change their state (trigger rules, rT) because of the perception
of fields;

4. how entities move in the space (transport rules, rTR) because of the percep-
tion of fields.

Thus, rules determine the global evolution of the RDM, that is, how the single
entities change their state because of local interactions and/or the perception
of fields (i.e. the effect of long–distance interactions), how entities move in the
space, and which fields are active in the space and their respective intensity.

The computation of the RDM proceeds in a series of discrete time steps,
where entities change their state simultaneously. At each step:

1. Each entity determines whether a reaction or a trigger rule can be applied,
according to the presence of neighboring entities and/or the perception of
fields. If a rule can be applied, the entity changes its state accordingly. In
case more than a single rule can be applied, different approaches can be
followed: for example, we could define priority values associated with each
rule, and the entity applies the one with highest priority, or the entity could
simply choose a rule at random, and so on. If no rule can be applied, the
entity keeps its state unchanged.

2. Once the state of the entities has been changed, each entity determines
whether a movement rule can be applied, and changes its position accord-
ingly. Conflict–resolving criteria for different rules and for competition (that
is, when two entities try to move to the same graph node) can be defined
also in this case.

3. Each entity emits one or more fields, according to its state and field source
functions.

4. Finally, fields emitted by the entities are propagated throughout the space,
according to field diffusion rules.

96 S. Bandini et al.

. . . .

. . . .

. . . .

. . . .

[2,k]

[1,k]

[3,1]

Fig. 1. The TRDM space.

Once all the sub–steps just described have been performed, the RDM has entered
a new state, defined by the position and state of the entities as well as the fields’
intensity value in each of the nodes of the graph.

In the following, we explicitly define a RDM designed for the simulation of
a deterministing Turing machine. We refer the reader to [5] for a more detailed
definition of the RDM and its properties.

4 The TRDM

In order to define the RDM simulating the DTM, that we will call TRDM, each
of the RDM components has to be suitably designed. As we will see, the rules
have been defined explicitly in order to avoid any possible conflict among rules
and in entity movement, that is, to obtain a deterministic behaviour.

The nodes of the graph representing the TRDM space can be split into three
different levels, as shown in Fig. 1. We will denote by [1, k], k ∈ (−∞,+∞) the
k–th node of the first level, that simulates the tape of the Turing machine; by
[2, k] the k–th node of the second level, that reproduces the possible positions of
the tape head; and by [3, 1] the unique node on the third level, that contains the
finite state control. Node [1, j] is connected only to [2, j], while all nodes [2, j]
are also connected to [2, j − 1], [2, j + 1] and also to node [3, 1].

Entities represent the different elements composing the Turing machine, i.e.
tape, head and finite state control, and can thus belong to three different types;
hence, T = {τ1, τ2, τ3}. Each level of the space is therefore populated by entities
of the same type. Let Sym = {−1, 0, 1, . . . , |Σ|} be a set of integer numbers
corresponding to the symbols of Σ plus the blank symbol (−1) and a “no symbol”
identifier (0). The set of states associated with each type are:

1. Xτ1 = {Sym − {0}} × Z, where Z denotes the set of integer numbers. That
is, the states of entities of type τ1 correspond to the alphabet symbols, or
to the blank symbol b. The second component of the state is used by the
entities to know their position in the bottom level of the graph (i.e. the cell
number). We will call entities of this type tape entities.

Computing with a Distributed Reaction-Diffusion Model 97

2. Xτ2 = Sym × Op ×Δ ∪ {0} × Z, with Op = {R,W,M}. The unique entity
of type τ2 simulating the tape head of the DTM assumes states representing
the symbol to be read or written (Sym), the operation to be performed (Op,
that can be read, write, or move), and how the head moves (Δ). The integer
number of the last state component is used by the entity to keep track of the
last position along the tape before the current one. We will call this entity
head entity.

3. Xτ3 = Q×Sym×Δ∪{0}×{R,W}. The unique entity of type τ3 represents
the finite control of the DTM; Q is the state set of the finite control; Sym and
Δ are used to notify to the tape head the symbol that has to be written and
the subsequent movement; R and W indicate which operation the control is
waiting for to be completed. We will call this entity control entity.

Three fields, F1, F2, and F3 are active in the TRDM space. They are used by
the tape head entity to communicate with the finite state control entity and the
tape symbol entities. The sets of possible values for the three fields are W1 = Z,
W2 = Sym, W3 = Δ ×W2. The field source functions, defining when and how
the different entity types emit the fields are:

1. ∀〈j, k〉 ∈ Xτ1 , φτ1(〈j, k〉) = 〈k,⊥,⊥〉; entities of type τ1 (representing tape
symbols) emit only field F1 (the values for F2 and F3 are undefined), with
intensity corresponding to their position in the first level of the graph (i.e.
their cell).

2. φτ2(〈i, Y, d, k〉) = 〈⊥, i,⊥〉, if i > 0 and Y = R, φτ2(〈i, Y, d, k〉) = 〈⊥, 0,⊥〉 if
Y = M ; φτ2(〈i, Y, d, k〉) = 〈⊥,⊥,⊥〉 if Y = W . The head entity of type τ2
emits only field F2 to propagate the symbols read from the tape to the finite
state control (i), and to signal to the latter that a write operation has been
completed (in this case, F2 = 0).

3. φτ3(〈q, d, j,W 〉) = 〈⊥,⊥, 〈d, j〉〉 if q �= {qY , qN , q0}, and d, j �= 0, 〈⊥,⊥,⊥〉
otherwise. When it is not in one of the halting states qY and qN or in the
initial state, the control entity emits field F3 to signal to the head entity
which symbol has to be written on the tape (j) and where it has to move
(d).

In the TRDM, we assume that fields generated by entities propagate only
to nodes within distance one from the source node, keeping the same intensity
value, and can be perceived by all the entities, without explicitly specifying field
diffusion rules. Moreover, no field composition functions are needed. The other
rules of the TRDM have been designed to simulate the computation of the DTM.
By Fi[p] we denote the value of field Fi in node p ∈ V . In the following, we will
define the rules by describing the conditions that have to be satisfied by one
or more entities (according to entities type, position, and state), and possible
field values in some space positions, and by describing the change in the state
or position of the entities involved.

98 S. Bandini et al.

Reaction Rules

rR
1 =

〈[1, k], τ1, 〈j, k〉〉, 〈[2, k], τ2, 〈0, R, 0, k′〉〉
〈[1, k], τ1, 〈j, k〉〉, 〈[2, k], τ2, 〈j, R, 0, k′〉〉

(1)

Rule rR
1 is applied to the head entity (type τ2) and a tape entity (τ1) when

located in the adjacent nodes of the graph (at the tape and head levels, in
position k). It simulates a read operation of the tape head of the DTM, and
changes the head entity state according to the symbol read (j).

rR
2 =

〈[1, k], τ1, 〈i, k〉〉, 〈[2, k], τ2, 〈j,W, d, k′〉〉
〈[1, k], τ1, 〈j, k〉〉, 〈[2, k], τ2, 〈0,M, d, k〉〉 (2)

Rule rR
2 involves the head entity and a tape entity in an adjacent position,

and simulates a write operation of the head of the DTM. In fact, the tape entity
involved in the reaction changes its state from 〈i, k〉 to 〈j, k〉, while the head
entity is ready to move to a new position after writing on the tape.

Trigger Rules

rT
1 =

〈[3, 1], τ3, 〈q, 0, 0, R〉〉, F2[3, 1] = i

〈[3, 1], τ3, 〈δ(q, σi),W 〉〉
(3)

Rule rT
1 simulates the state transition of the DTM state control, by changing

the state of the entity located at node [3, 1]. Field F2 emitted by the head entity
propagates the “code” of the symbol just read (i) from the tape. The control
entity perceives it and changes its state according to the transition function δ
from q to δ(q, σi). Notice that in the new state the control entity is no longer
sensitive to field F2, since it changes the “next operation” value from R to W .

rT
2 =

〈[2, k], τ2, 〈i, R, 0, k′〉〉, F3[2, k] = 〈d, j〉
〈[2, k], τ2, 〈j,W, d, k′〉〉 (4)

Rule rT
2 is used to propagate from the finite state control to the tape head

entity the symbol that has to be written on the tape (j), and how the head
has to move (d). The tape head entity changes its state and gets ready to write
symbol σj .

rT
3 =

〈[3, 1], τ3, 〈q, j, d,W 〉〉, F2[3, 1] = 0
〈[3, 1], τ3, 〈q, 0, 0, R〉〉

(5)

This rule is used to simulate an “acknowledgement” from the tape head to
the state control. The head entity has just written the symbol emitted by the
control entity with rule rR

2 , and is emitting field F2 with intensity 0. The control
entity perceives the field, and changes its state in order to wait for the next read
operation to be completed, no longer emitting field F3.

rT
4 =

〈[2, k], τ2, 〈0,M, d, k′〉〉, F1[2, k] = k, k �= k′

〈[2, k], τ2, 〈0, R, 0, k〉〉
(6)

Computing with a Distributed Reaction-Diffusion Model 99

Rule rT
4 is applied to the tape head entity after it has moved to a new position.

The entity realizes that it has just arrived in a new position (by checking the
value of the field emitted by the tape symbol entity), and restores itself in a
“read” state in order to perform a read operation. Note that, after the application
of this rule, the head entity is no longer sensitive to field F1.

Transport Rules

rTR
1 =

〈[2, k], τ2, 〈0,M, d, k′〉〉, F1[2, k] = k, k = k′

〈[2, k + d], τ2, 〈0,M, d, k′〉〉 (7)

This rule makes the tape head move. The entity is ready to move (it is in the
“move” state denoted by M), perceives the position along the tape emitted by
the tape entity with field F1, and moves according to the d value that has been
previously communicated by the control entity.

5 The Simulation

A configuration of the DTM is a triple CT = 〈q, c, T 〉, where q is the state
of the finite control, c is the cell where the tape head is located, and T =
{. . . , t−1, t0, t1, . . .} is the sequence of symbols on the tape, either belonging to
the alphabet Σ or blank. An halting configuration for the DTM is a configuration
with the control in one of the halting states. An accepting configuration is an
halting configuration with the control in state qY ; an halting configuration with
the control in state qN is a rejecting configuration. A computation of the DTM
can be expressed as a sequence of configurations CT

0 , C
T
1 , . . . , C

T
n . Analogously,

a configuration of the TRDM, denoted by CR is described by the state and
position of the entities active in the space, and by the set of fields that are
active. The function Loc : V → T × E ∪ {⊥} associates with each node of
the graph the type and the state of the entity located in the node (⊥, if the
node is empty). Entities emit fields according to the field source functions. An
halting configuration of the TRDM is a configuration where no rule can be
applied. Accepting and rejecting configurations are halting configurations with
the control entity in state 〈qY , ·, ·, ·〉 and 〈qN , ·, ·, ·〉, respectively.

Let us suppose that the DTM has been given the input string s = s1s2 . . . sn.
The string is positioned on the tape starting from cell 1. All other tape cells con-
tain the blank symbol. The initial configuration of the DTM is CT

0 = 〈q0, 1, T 〉,
with the control in the initial state q0, the tape head scanning cell 1 of the tape,
and T = {. . . , b, s1, s2, . . . , sn, b, . . .}. The initial configuration of the TRDM
reproduces the configuration of the DTM:

1. if 1 ≤ k ≤ n, Loc[1, k] = 〈τ1, 〈j, k〉〉, where j is such that σj = sk; otherwise,
Loc[1, k] = 〈τ1, 〈−1, k〉〉;

2. Loc[2, 1] = 〈τ2, 〈0, R, 0, 0〉〉; Loc[2, k] = ⊥, ∀k �= 1.
3. Loc[3, 1] = 〈τ3, 〈q0, 0, 0, R〉〉;

100 S. Bandini et al.

In the same way, it is possible to define, for every configurationCT = {q, c, T }
of the DTM, the corresponding configuration of the TRDM, where:

1. Loc[3, 1] = 〈τ3, 〈q, 0, 0, R〉〉.
2. Loc[2, c] = 〈τ2, 〈0, R, 0, c〉〉; Loc[2, k] = ⊥, ∀k �= c;
3. ∀i such that ti = σj , Loc[1, i] = 〈τ1, 〈j, i〉〉; ∀i such that ti = b, Loc[1, i] =
〈τ1, 〈−1, i〉〉.

Given a configuration CT of the DTM, we denote by Conf (CT) the corre-
sponding configuration of the TRDM.

Potentially, starting from the initial configuration, different sequences of rule
applications could lead to different sequences of configurations, i.e. different be-
haviours of the TRDM. However, the rules have been defined in order to obtain
a deterministic behaviour, as we are going to show. According to the standard
terminology, a configuration CR

k for the TRDM is reachable from the initial con-
figuration CR

0 if there is a sequence of applications of rules leading from CR
0

to CR
k . In the same way, a configuration CT

k of the DTM is reachable from the
initial configuration CT

0 if there exists a sequence of state transitions leading to
CT

k .

Lemma 1. In every reachable configuration of the TRDM:

1. only one rule can be applied, and once a rule has been applied, it will be
applied again only after the application of all the other rules;

2. if the tape head entity is in state 〈0, R, 0, k〉, the configuration of the TRDM
corresponds to a reachable non halting configuration of the DTM.

Proof (sketch) In the initial configuration of the TRDM, no field is active, and
trigger and transport rules cannot be applied. Since the head entity is in state
〈0, R, 0, 0〉, it is not sensitive to field F1 that the tape entities start to emit.

Therefore, the only rule that can be applied is rR
1 . At this point, the head

entity enters state 〈i, R, 0, 0〉, such that s1 = σi, and starts to emit field F2 with
intensity i. While rule rR

1 can no longer be applied, rule rT
1 can now be activated,

determining the effect of field F2 on the control entity. The control entity enters
state 〈〈δ(q0, σi)〉,W 〉, can no longer perceive F2, and starts to emit field F3.

The only rule that can be applied now is the trigger rule rT
2 corresponding

to F3, that changes the state of the head entity from 〈i, R, 0, 0〉 to 〈j,W, d, 0〉 (j
corresponds to symbol σj that has to be written on tape).

At this point, F3 is no longer perceived by the head entity, that stops emitting
field F2 for effect of the change of state: the only rule that can be applied is rR

2

between the head entity and the tape entity in [1, 1], that change their state,
respectively, to 〈0,M, d, 1〉 and 〈j, 1〉. Now, the head entity emits again field F2,
that activates rule rT

3 for the control entity, that stops emitting F3 and enters
state 〈q′, 0, 0, R〉.

Rule rTR
1 is the only rule that can now be applied, and the head entity moves

from node [2, 1] to node [2, 1 + d]. Once arrived in the new position, it perceives
the field emitted by the tape entity and changes its state to 〈0, R, 0, 1〉 for effect
of rule rT

4 .

Computing with a Distributed Reaction-Diffusion Model 101

In other words, the order of application of the rules reproduces the single
DTM operations, as shown in Fig 2. Rule rR

1 reproduces the tape head reading
a symbol; rule rT

1 propagates the symbol read to the control entity, that changes
its state accordingly reproducing the DTM transition function; rules rT

2 , rR
2 and

rT
3 are used to reproduce the writing of a symbol on the tape; finally rules rTR

1

and rT
4 simulate the movement of the tape head.

It is straightforward to see that the configuration reached by the TRDM at
this point corresponds to a reachable configuration of the DTM, that is, the
one reached after one computation step (CT

1), and again the only rule that
can be applied is rR

1 , corresponding to reading a symbol from the tape, as at
the beginning of the simulation. The same argument holds for any reachable
configuration of the DTM. In particular, given any given configuration CR

k =
Conf (CT

k), the TRDM moves to the configuration CR
k+1 = Conf (CT

k+1), again
by following a unique series of rule application identical to the one leading from
Conf (CT

0) to Conf (CT
1). ��

According to the previous lemma, when the TRDM is initialized in configu-
ration CR

0 = Conf (CT
0) corresponding to the initial configuration of the DTM,

it evolves deterministically through a sequence of configurations CR
1 . . . CR

k such
that CR

1 = Conf (CT
1) . . . CR

k = Conf (CT
k), corresponding to the computation of

the DTM.
To complete the simulation we have to prove the following:

Theorem 1. Given an initial configuration for the DTM and the corresponding
initial configuration for the TRDM, the TRDM reaches an halting configuration
iff the DTM halts. Moreover, the TRDM reaches an accepting configuration iff
the DTM accepts the input string.

Proof. Let CT
0 , C

T
1 , . . . , C

T
(h−1) the sequence of configurations resulting from the

computation of the DTM leading to the halting configuration CT
h . We suppose

without loss of generality that CT
h is an accepting configuration, that is, with

the control in state qY . According to Lemma 1, when the DTM is in configu-
ration CT

(h−1) = 〈q(h−1), k, T 〉, the TRDM is in the corresponding configuration
CR

(h−1) = Conf (CT
(h−1)), where the tape head entity is located on node [2, k] and

is in state 〈0, R, 0, k〉, the tape symbol entities are in states corresponding to the
symbols contained in the DTM tape at step (h − 1), and the control entity is
in state 〈q(h−1), 0, 0, R〉. At this point, the sequence of application of the rules
is the one sketched above for the transition from CR

0 to CR
1 , until the applica-

tion of rule rT
2 . The difference is that now the control entity has entered the

state 〈δ(q(h−1), sk),W 〉. Since CT
h is an accepting configuration for the DTM,

we have that δ(q(h−1), sk) = qY . Therefore, the control entity enters the state
〈qY , 0, 0,W 〉. According to its field source function, it cannot emit any field when
it enters a state corresponding to qY . Without field F3, no other rule can be ap-
plied at this point, and the TRDM halts in an accepting configuration. ��

102 S. Bandini et al.

CT
k CR

k = Conf (CT
k)

�

δ

�
rR
1 Reading of the tape symbol

�
rT
1 State transition of the finite control

�
rT
2 Instructions for the tape head

�
rR
2 Writing a symbol on the tape

�
rT
3 Write operation completed

�
rTR
1 Movement of the tape head

�
rT
4 DTM transition completed

�
CR

k+1 = Conf (CT
k+1)CT

k+1

Fig. 2. Sequence of rule applications of the TRDM (middle) corresponding to a
state transition of the DTM (left). The right column indicates the DTM opera-
tion corresponding to each rule.

6 Conclusions

The RDM appears to be an interesting model of computation, inspired by nat-
ural processes (chemical, physical) in the same vein of the Chemical Abstract
Machine (CHAM) [7]. It has been the basis for the creation of computer based
decision support systems and cooperative work systems in environments close to
business management [4,5,8], due to its expressiveness and its ability to simulate
possible development scenarios and to observe their dynamical evolution in a
spatial framework dominated by the local interactions of different entities. This
paper is a first step towards the theoretical assessment of their computational
power, through the comparison with standard models such as deterministic Tur-
ing machines.

References

1. A, Turing. The chemical basis of morphogenesis. Philos. Trans. R. Society, 237,
1952.

2. R.S. Cantrell, C. Cosner. Spatial Ecology via Reaction–Diffusion Equations. Wi-
ley, 2003.

Computing with a Distributed Reaction-Diffusion Model 103

3. S. Bandini, G. Mauri, G. Pavesi, C. Simone. A parallel model based on Cellular
Automata for the simulation of pesticide percolation in the soil. Proceedings of
PACT’99, Lecture Notes in Computer Science 1662, 383–394.

4. C. Simone, S. Bandini. The reaction–diffusion methaphor for modeling coopera-
tive work. Prestige J. of Management and Research, 2(1): 1–21, 1998.

5. S. Bandini, C. Simone. Integrating forms of interaction in a distributed model.
Fundamenta Informaticae, 61(1): 1–17, 2004.

6. M.R. Garey, D.S. Johnson, Computers and Intractability. A Guide to the Theory
of NP–Completeness. Freeman and Company, San Francisco, 1979.

7. G. Boudol, G. Berry. The chemical abstract machine. Theoretical Computer Sci-
ence, 96(1), 1992.

8. C. Simone, S. Bandini. Integrating awareness in cooperative applications through
the reaction–diffusion metaphor. Computer Supported Cooperative Work 11(3-4):
495-530, 2002.

Computational Universality in Symbolic

Dynamical Systems�

Jean-Charles Delvenne1, Petr Kůrka2, and Vincent D. Blondel1

1 Catholic University of Louvain, Department of Mathematical Engineering,
Avenue Georges Lemaitre 4, B-1348 Louvain-la-Neuve, Belgium

{delvenne,blondel}@inma.ucl.ac.be
2 Charles University of Prague, Faculty of Mathematics and Physics,

Malostranské náměst́ı 25, CZ-11800 Praha 1, Czechia
kurka@ms.mff.cuni.cz

Abstract. Many different definitions of computational universality for
various types of systems have flourished since Turing’s work. In this
paper, we propose a general definition of universality that applies to ar-
bitrary discrete time symbolic dynamical systems. For Turing machines
and tag systems, our definition coincides with the usual notion of uni-
versality. It however yields a new definition for cellular automata and
subshifts. Our definition is robust with respect to noise on the initial
condition, which is a desirable feature for physical realizability.
We derive necessary conditions for universality. For instance, a universal
system must have a sensitive point and a proper subsystem. We conjec-
ture that universal systems have an infinite number of subsystems. We
also discuss the thesis that computation should occur at the ‘edge of
chaos’ and we exhibit a universal chaotic system.

1 Introduction

Computability is often defined via universal Turing machines. A Turing machine
is a dynamical system, i.e., a set of configurations together with a transformation
of this set. Here a configuration is composed of the state of the head and the
whole content of the tape. Computation is done by observing the trajectory of
an initial point under iterated transformation.

However there is no reason why Turing machines should be the only dynam-
ical systems capable of universal computation, and indeed we know that many
systems may perform universal computations.

Artificial neural networks [1], cellular automata [2], billiard balls on a pool
table of some complicated form, or a ray of light between a set of mirrors [3] are
such systems.
� This paper presents research results of the Belgian Programme on Interuniversity

Attraction Poles, initiated by the Belgian Federal Science Policy Office. The scientific
responsibility rests with its author(s). J.-C. D. holds a FNRS fellowship (Belgian
Fund for Scientific Research). A extended version of this paper, including proofs, is
available on http://www.arxiv.org/abs/cs.CC/0404021

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 104–115, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Computational Universality in Symbolic Dynamical Systems 105

For all these systems, many particular definitions of universality have been
proposed. Most of them mimic the definition of computation for Turing ma-
chines: an initial point is chosen, then we observe the trajectory of this point
and see whether it reaches some ‘halting’ set. See for instance [4] and [5].

However it has been shown that the computational capabilities of many of
these systems are strongly affected by the presence of noise [6,7]; fault-tolerant
cellular automata are built in [8]. See also [9,10,11] for some definitions of analog
computation and issues relative to noise and physical realizability.

Moreover, many variants of these definitions exist and lead to different classes
of universal dynamical systems. In particular, there is no consensus for what it
means for a cellular automaton to be universal.

Another field of investigation is to make a link between the computational
properties of a system and its dynamical properties. For instance, attempts have
been made to relate ‘universal’ cellular automata to Wolfram’s classification. It
has also been suggested that a ‘complex’ system must be on the ‘edge of chaos’:
this means that the dynamical behavior of such a system is neither simple (i.e., an
attracting fixed point) nor chaotic; see [2,12,13,14]. Other authors nevertheless
argue that a universal system may be chaotic: see [1].

The basic questions we would like to address are the following:

– What is a computationally universal dynamical system?
– What are the dynamical properties of a universal system?

A long-term motivation is to answer these questions from the point of view
of physics. What natural systems are universal? Is the gravitational N-body
problem universal [3]? Are the Navier-Stokes equations universal [15]?

However in this paper we especially focus on symbolic dynamical systems,
i.e., systems defined on the Cantor set {0, 1}N or a subset of it. Some motivat-
ing examples of dynamical systems are Turing machines, cellular automata and
subshifts. Let us briefly describe our ideas.

Extending Davis’ definition of universal Turing machine, we say that a system
is universal if some property of its trajectories, such as reachability of the halting
set, is r.e.-complete.

However, rather than considering point-to-point or point-to-set properties,
we consider set-to-set properties. Typically, given an initial set and a halting
set, we look whether there is at least one configuration in the initial set whose
trajectory eventually reaches the halting set.

We require the initial and halting sets to be closed open sets of the Cantor
space endowed with the usual product topology, which are sets that can be
described with a finite number of bits in a natural standard way.

Finally, we do not restrict ourselves to the sole property ‘Is there a trajectory
going from A to B?’ (where A and B are closed open sets), but to any property
of closed open sets that can be described in temporal logic.

This definition addresses the two issues raised above. Firstly, it is a general
definition directly transposable to any symbolic system. Secondly, dealing with
open sets rather than points takes into account some constraints of physical
realizability, such as robustness to noise.

106 J.-C. Delvenne, P. Kůrka, and V.D. Blondel

With this definition in mind, we prove necessary conditions for a symbolic
system to be universal. In particular, we show that a universal symbolic system
is not minimal, not equicontinuous and does not satisfy the effective shadowing
property. This last property is a variant of the usual shadowing property. We
conjecture that a universal system must have infinitely many subsystems, and
we show that there is a chaotic system that is universal, contradicting the idea
that computation can only happen on the ‘edge of chaos’.

The paper is organized as follows: in Section 2 we define effective symbolic
systems; in Section 3 the syntax and semantics of temporal logic is exposed; in
Section 4 the formal definition of universality is given, and simple examples are
provided; this definition is discussed in Section 5; in Section 6 necessary condi-
tions for a system to be universal are given, related to minimality, equicontinuity
and effective shadowing property; in Section 7 we build a chaotic system that
is universal, and briefly discuss the existence of the ‘edge of chaos’; Section 8
discusses possible directions for future work.

2 Effective Symbolic Systems

Effective symbolic dynamical systems are computable continuous transforma-
tions of a symbolic space. In this section, we provide a formal definition and
elementary examples.

A symbolic set is the Cantor set {0, 1}N or a subset of it. Some other sets
deserve to be called symbolic, for instance AN, Q × AZ, AZd

, where A and Q
are finite sets and d is a positive integer. But all these sets can be recoded
into {0, 1}N with standard tricks. Thus, every time we deal with such a set we
implicitly suppose that we deal with {0, 1}N.

Another set of interest is the set of finite and infinite binary words {0, 1}∗ ∪
{0, 1}N. This set can be recoded as a subset of {0, 1, B}N, if we think of a finite
word w as the infinite word wBBBBBB . . . This set can be again recoded as a
subset of {0, 1}N.

The Cantor set can be endowed with the product topology. This topology is
given by the metric d(x, y) = 0 if x = y and

d(x, y) = 2−n

where n is the index of the first bit on which x and y differ.
If w is a word of {0, 1}∗, then [w] denotes the set of all sequences beginning

by w. In fact, sets of this form, usually called cylinders, are exactly the balls of
the metric space. Closed open sets (clopen sets for short) of {0, 1}N are exactly
all finite unions of cylinders. Thus clopen sets are finitary objects that can be
described by finite words in alphabet {0, 1} ∪ {, }.

A symbolic space is closed subset of {0, 1}N. It is a topological space for the
relative topology, whose clopen sets are the intersections of the closed subset
with all clopen sets of Cantor space. A symbolic space is said to be effective if
checking whether a given clopen set of the Cantor space intersects the symbolic
space is decidable.

Computational Universality in Symbolic Dynamical Systems 107

Definition 1 An effective symbolic dynamical system is a continuous map from
an effective symbolic space to itself, such that the inverse map restricted to clopen
sets is computable.

This definition of effective function in a Cantor space is equivalent to classical
definitions in computable analysis, for instance [16].

An effective subsystem of an effective symbolic system is an effective closed
subset that is invariant under the map.

For example, a cellular automaton is an effective symbolic system, acting on
the space AZd

, where A is the finite alphabet and d is the dimension. A Turing
machine is an effective system acting on the space Q×AZ, where Q is the finite
set of states of the head and A is the finite tape alphabet.

Recall that a shift is a dynamical system on AN or AZ (where A is a finite
alphabet) with the map σ : AN → AN : a0a1a2a3 . . . $→ a1a2a3 . . . or σ : AZ →
AZ : . . . a−3a−2a−1a0a1a2a3 . . . $→ . . . a−3a−2a−1a0a1a2a3 . . ., where the symbol
of index 0 is underlined. A subshift is a subsystem of a shift. A one-sided (two-
sided) full shift is an effective system, and if a subshift is an effective closed
subset of the Cantor space, then it is again an effective system.

A subshift can be seen as a set of infinite words over a finite alphabet. The
set of all finite words appearing at least once in at least one of these words is
called the language of the subshift. In fact it is easy to see that an effective
subshift is exactly a subshift whose language is recursive.

3 Temporal Logic

Our goal is to describe properties of trajectories that may be useful in defining
universal computation, such as ‘starting from here, the system eventually goes
there’. Temporal logic, developed by Prior in 1953, is appropriate to express
such properties. It was later used by computer scientists to express and prove
sentences such as, typically, ‘the program will not reach a forbidden state’; see
[17] for a reference book on modal and temporal logic.

Formally, we suppose that we have a set {P0,P1,P2, ...} of proposition sym-
bols indexed by N including two propositions that we will denote ⊥ and %, and
we form all temporal formulae by composing the propositions symbols with the
boolean operators ∨ and ¬, the temporal unary operator ◦ (read ‘next’) and the
temporal binary operator U (‘until’).

We can also add some usual abbreviations: φ∧ψ denotes ¬(¬φ∨¬ψ), φ⇒ ψ
denotes ¬φ ∨ ψ, &φ (read ‘eventually φ’) stands for %Uφ and �φ (read ‘always
φ’) for ¬ & ¬φ.

We now give temporal formulae a semantics adapted to symbolic systems.
Let (X, f) be an effective symbolic system. Recall that X is a symbolic space and
f : X → X a continuous function. We suppose that clopen sets are numbered in
an effective way P0, P1, P2, . . . Then to each formula φ we assign a subset |φ| of
X , called the interpretation of φ, in the following way.

– If φ is the proposition symbol Pn, then |φ| = Pn. Moreover we ask that
|⊥| = ∅ and |%| = X .

108 J.-C. Delvenne, P. Kůrka, and V.D. Blondel

– If φ is φ1 ∨ φ2 then |φ| = |φ1| ∪ |φ2|.
– If φ is ¬ψ then |φ| = X \ |ψ|.
– If φ is ◦ψ then |φ| = f−1(|ψ|).
– If φ is φ1Uφ2 then |φ| =

⋃
n∈N An, where A0 = |φ2| and An+1 = f−1(An) ∩

|φ1| for all n.

In particular, if φ is &ψ then |φ| =
⋃

n∈N f−n(|ψ|).
We say that a formula is satisfiable if |φ| �= ∅.
Intuitively, we may think that a formula φ represents a statement about

a point of X , which is seen as ‘the current configuration of the system’. This
statement may be true for some points of X and false everywhere else. For
example, &Pn means ‘when applying f iteratively, the current configuration will
eventually be in Pn’. The formula PmUPn means ‘the configuration lies in Pm

until it reaches Pn’ or, in other words, ‘the configuration will stay in Pm during
a finite time and then get in Pn’.

Then |φ| is the set of points for which the assertion φ holds, and a satisfiable
formula is verified by at least one configuration. Note that in the following, we
will make no distinction between a proposition symbol Pn and the corresponding
clopen set Pn.

4 Universal Systems

We are now ready to state the main definition. We define a universal system
to be an effective system with some r.e.-complete temporal property. Then we
show that most usual ways to define computability are particular examples of
this definition.

Davis [18] proposed the following definition: a Turing machine is universal
if the relation ‘xn is in the orbit of xm’ is r.e.-complete, where xm and xn are
arbitrary finite configurations. Here we modify Davis’ definition in order to be
applied to any effective symbolic system. Our choices are justified in Section 5.

Definition 2 An effective dynamical system is universal if there is a recursive
family of temporal formulae such that knowing whether a given formula of the
family is satisfiable is an r.e.-complete problem.

An r.e.-complete problem, or Σ1-complete problem, is a recursively enumer-
able problem, to which any recursively enumerable problem is Turing-reducible.

Note that this may be interpreted as a non-deterministic scheme of com-
putation. The computation succeeds iff at least one trajectory exhibits a given
behavior.

We may call halting problem for f , the satisfiability problem for formulae:

(Pn ∧ &Pm)n,m∈N,

which reads: ‘There is a configuration in the clopen set Pn that eventually reaches
the clopen set Pm’. We may think of Pn as an initial configuration of which we

Computational Universality in Symbolic Dynamical Systems 109

know only the first digits and Pm as the halting set. The unspecified digits of
the initial configuration may be seen as encoding the non-deterministic choices
occurring during the computation.

Turing machines are often described as working only on finite configu-
rations. A finite configuration is an element of Q × {0, 1}∗ × {0, 1}∗, where Q
denotes the set of states of the head, the first binary word is content of the tape
to the left of the head and the second binary word is the right part of the tape.
The rest of the tape is supposed to be entirely filled with blank symbols. Such a
Turing machine is universal if given two finite configurations u and v, checking
whether u is in the trajectory of v is an r.e.-complete problem.

This is a particular case of our definition. Indeed, let W = {0, 1}∗ ∪ {0, 1}N
the set of finite and infinite binary words. Then the Turing machine transition
function is also defined on Q×W ×W , which is a compact space, whose isolated
points are Q×{0, 1}∗×{0, 1}∗. Isolated points are in fact clopen sets of Q×W ×
W . So the problem of checking whether the formula Pn∧&Pm is satisfiable, given
two clopen sets Pn and Pm, is r.e.-complete. Indeed, it is already r.e.-complete if
we restrict ourselves to clopen sets that are isolated points, and it is recursively
enumerable (although perhaps not r.e.-complete) on non-isolated clopen sets.

Tag systems were introduced by Post in 1920. A tag system is a transfor-
mation rule acting on finite binary words. At each step, a fixed number of bits is
removed from the beginning of the word and, depending on the values of these
bits, a finite word is appended at the end of the word. Minsky proved in 1961
that there is a so-called universal tag system, for which checking that a given
word will end up to the empty word when repeating the transformation is an
r.e.-complete problem; see [2].

We can extend the rule of tag systems to infinite words, by just removing to
them the fixed number of bits. Thus we have a dynamical system on the compact
space {0, 1}∗∪{0, 1}N of finite and infinite words, in which finite words are clopen
sets. Again, if the tag system is universal for the word-to-word definition, then
it is universal for our definition with the formulae Pn ∧ &Pm.

We can also apply our definition to functions on integers. Let N∪{∞} be
the topological space with the metric d(n,m) = | 1

n+1 −
1

m+1 |. This is effectively
homeomorphic to the set {1n0∞|n ∈ N} ∪ {1∞}. Then a total computable map
on N can be extended to an effective continuous map on N ∪ {∞} iff either it
has a finite range and only one integer has an unbounded preimage set, or it has
an infinite range and we can compute a (finite) bound on the largest preimage
of every given integer.

For example, it is meaningful to ask whether the famous 3n + 1 function
(which is effective) is universal. This is an unsettled question. But Conway [19]
proved that similar functions, called Collatz functions, may be universal.

We now give an example of a universal cellular automaton.
Let us take a universal Turing machine with a blank symbol. We suppose that

when the halting state is reached, then the head comes back to the cell of index
0. We can simulate it in an almost classic way with a one-dimensional cellular

110 J.-C. Delvenne, P. Kůrka, and V.D. Blondel

automaton. The alphabet of the automaton is A∪(A×Q)∪{L,R,Error}, where
A is the tape alphabet (including the blank symbol) and Q the set of states.

Let us take a point in the cylinder [L, initial data of the Turing machine, R],
and observe its trajectory. The symbol L moves to the left at the speed of light,
leaving behind blank symbols. The symbol R moves to the right in a similar way.
Meanwhile, the space between L and R is used to simulate the Turing machine
and is composed of symbols from A and exactly one symbol from (A×Q), which
denotes the position of the head. When L or R symbols meet each other, then a
spreading Error symbol is produced, that erases everything.

This cellular automaton is universal for formulae Pn∧&Pm. Indeed, there is an
orbit from the cylinder [L, initial data of the Turing machine, R] to the cylinder
[halting state] (both cylinders centered at cell of index zero) if and only if the
universal Turing machine halts on the initial data.

5 Discussion on the Definition of Universality

Our definition of universality differs in several ways from what we could expect at
first glance from a generalization of Turing machine universality. In this section
we give various arguments to support the present definition against seemingly
more obvious attempts. In particular, we justify the use of set-to-set properties,
expressed in the formalism of temporal logic, on systems for which the transition
function is computable.

Set-to-Set Properties. Many definitions of universality for particular systems
propose to observe point-to-point properties. So it could seem that it is possible
to build a general definition of universality with point-to-point properties.

The most natural idea would be to say that a metric space with a dense set
of points (xn)n∈N is universal if the property ‘xn is in the trajectory of xm’ is
r.e.-complete.

However, as remarked in [20], this leads to conclude that the shift is universal;
a consequence that is counter-intuitive. It sounds unreasonable to admit the
shift as universal, because it does not treat any information, but just reads the
memory.

Indeed if instead of ultimately periodic points we choose configurations with
primitive recursive digits, then we take as initial configurations the sequence of
states of the head of a universal Turing machine during a computation. And we
just have to shift to know whether the halting state will appear.

The definition presented in this text overcomes this problem in a simple
manner: the user needs only to give a finite number of bits as an initial condition.
Instead of initial configurations we shall rather talk about initial sets, which may
be seen as ‘fuzzy points’, points defined with finite accuracy.

This solution is also more satisfactory from the point of view of physical
realizability. Indeed, we expect the set of configurations of a physical system to
be uncountable in general, and specifying an initial point for the computation
means a priori that we must give an infinite amount of information. Preparing a

Computational Universality in Symbolic Dynamical Systems 111

physical system to be in a very particular configuration is likely to be impossible,
because of the noise or finite precision inherent to every measure.

Temporal Properties. What kind of property are we going to test on clopen
sets? Here again, we must avoid trivialities. Suppose that we look at identity on
the Cantor space. We now choose to observe the following property: a clopen
set satisfies the property iff its index (i.e., the integer describing the clopen set)
satisfies some r.e.-complete property on N. Then we find again that identity is
computationally universal, which is desirable.

On the other hand, we see no reason to restrict ourselves to the sole halting
property: ‘there is a trajectory from this clopen set to that clopen set’. Any
observable property could a priori be used as a basis for computation. For in-
stance, the chaotic system built in Section 7 is universal but not for the halting
property.

So we must precisely define a class of observable properties of clopen sets,
not too large and not too restricted. Temporal logic, as defined above, has been
widely used for decades to express expected properties of various transitions
systems and seems to be a reasonable choice.

Effectiveness. Finally, we add an effectiveness structure on dynamical systems,
because we want to be able to simulate the system step by step. Indeed, our
informal goal is to study when universality emerges from the long-term dynamics.
But if even a single step of the system is uncomputable, no surprise that the
long-term dynamics is unpredictable!

We therefore restrict ourselves to systems such that the inverse image of a
clopen set is computable. Note that for instance in [1] the author allows neural
networks with non-recursive weights, leading to a non-computable transition
function and to super-Turing capabilities.

6 Necessary Conditions for Universality

It has been highlighted in the Introduction that some attempts have been made
to link computational capabilities of a system to its dynamical properties. This
is also the purpose of this section.

For simplicity, we will write ‘symbolic system’ for ‘effective symbolic dynam-
ical system’ — unless otherwise specified.

Minimality. A minimal dynamical system is a system with no subsystem (ex-
cept the empty set and itself). It is characterized by the fact that all orbits are
dense.

Proposition 1 A minimal symbolic system is not universal.

The proof shows by induction that the interpretation of a formula is always
a clopen set, and that we can compute it.

112 J.-C. Delvenne, P. Kůrka, and V.D. Blondel

Now suppose that the symbolic system is not minimal but consists of several
minimal subsystems attracting the whole space of configurations. In other words,
the limit set is made of finitely many minimal systems. Recall that the limit set
of a dynamical system f : X → X is the set

⋂
n≥0 f

n(X).

Proposition 2 A symbolic system whose limit set is the finite union of minimal
subsystems is not universal.

For example, if all points uniformly converge to a periodic orbit, then the
system is not universal. A stronger statement is suggested by the intuition that
a universal system is able to simulate many other systems.

Conjecture 1 A universal symbolic system has infinitely many minimal sub-
systems.

Equicontinuity. A system f : X → X is equicontinuous if for all ε > 0 there
is a δ > 0 such that d(x, y) < δ implies d(f t(x), f t(y)) < ε, for any points x, y
and nonnegative t.

Proposition 3 An equicontinuous symbolic system is not universal.

Again, the proof shows that the interpretation of a formula is a computable
clopen set.

We say that a point x of a dynamical system f is sensitive if there is an ε > 0
such that for every δ > 0 there is a point y with d(x, y) < δ and a nonnegative
time t such that d(f t(x), f t(y)) > ε.

It is easy to show from compactness that an equicontinuous dynamical system
is exactly a system with no sensitive point. Hence, we can deduce from the above
result that a universal symbolic system must have a sensitive point.

Equicontinuity in the case of cellular automata has been given a combi-
natorial characterization in [21]. It is also proved that equicontinuous cellular
automata are eventually periodic, thus confirming in this particular case that
equicontinuity prevents computational universality from arising.

Shadowing Property. We now define the effective shadowing property for a
dynamical system.

Definition 3 Let (X, f) be a dynamical system. A δ-pseudo-orbit is a (finite or
infinite) sequence of points (xn)n≥0 such that d(f(xn), xn+1) < δ for all n.

A point x ε-shadows a (finite or infinite) sequence (xn)n≥0 if d(fn(x), xn) < ε
for all n.

The dynamical system is said to have the shadowing property if for all ε > 0
there is a δ > 0 such that any δ-pseudo-orbit is ε-shadowed by some point.

If moreover such a δ can be effectively computed from ε then we say that the
system has the effective shadowing property.

Computational Universality in Symbolic Dynamical Systems 113

We can give the following interpretation to this property: suppose that we
want to compute numerically the trajectory of x such that at every step numeri-
cal errors amount to δ. The resulting sequence of points is a δ-pseudo-orbit, and
the shadowing property ensures that this pseudo-orbit is indeed ε-close to an
actual trajectory of the system.

Proposition 4 A symbolic system that has the effective shadowing property is
not universal.

The proof shows that a formula is satisfiable iff it is satisfiable for δ-pseudo-
orbits, with δ small enough; but the latter property is decidable.

In particular, the full shift is not universal.
The following proposition almost shows that we cannot lift effectiveness of

the shadowing property in Proposition 4.

Proposition 5 There is an undecidable symbolic system that has the shadowing
property, but not the effective shadowing property.

An undecidable system is a system for which satisfiability of a given temporal
formula is undecidable. We don’t know whether this undecidable system is in
fact universal.

Note also that Turing machines that satisfy the shadowing property have
been given a combinatorial characterization in [22]; in particular, the proof shows
that the link between ε and δ (see Definition 3) is linear. Hence the effective
shadowing property is not stronger than the shadowing property in the case of
Turing machines.

7 A Universal Chaotic System and the Edge of Chaos

According to Devaney [23], a system is chaotic if it is infinite, topologically
transitive and has a dense set of periodic points. We can prove that such a
system is sensitive [24].

It is not difficult to prove the existence of a universal subshift. Indeed, con-
sider all the forbidden words of the kind 01n00t1, where the universal Turing
machine launched on data n does not halt in less than t steps. Then the subshift
of all binary sequences avoiding this set of words is effective and universal.

Improving this construction, one gets the following result:

Proposition 6 There exists an effective system on the Cantor space that is
chaotic and universal.

The central idea of the ‘edge of chaos’ is that a system that has a complex
behavior should be neither too simple nor chaotic. There are several ways to
understand that.

Here we interpret ‘complex system’ by ‘universal symbolic system’. Then
‘too simple’ could refer to the situation treated in Proposition 2: one or several

114 J.-C. Delvenne, P. Kůrka, and V.D. Blondel

attracting minimal subsystems. This includes of course the case of a globally
attracting fixed point.

If we take ‘chaotic’ as meaning ‘Devaney-chaotic’, then computational uni-
versality need not be on the ‘edge of chaos’, since we have just provided a chaotic
system that is universal.

However, many examples of chaotic systems (whatever the exact meaning
given to ‘chaotic’, and for symbolic systems as well as for analog ones), although
not all of them, have the shadowing property and even the effective shadowing
property. For instance the shift and Smale’s horseshoe (present in some physi-
cal systems), as well as all hyperbolic systems, satisfy the effective shadowing
property with a linear relation between ε and δ (see Definition 3).

Note nevertheless the ‘edge of chaos’ has been intensively studied for cellu-
lar automata. We don’t know whether an example of chaotic universal cellular
automaton exists.

8 Future Work

Many questions are yet to solve. For instance, we lack sufficient conditions of
universality. We didn’t investigate in depth what properties a universal cellular
automaton satisfies. Let us mention three possible directions for future work.

All formulae involved in examples of universal systems in the preceding sec-
tions were quite simple; they were Σ1 formulae, i.e., formulae where no ‘until’ is
negated. We can see that the interpretation of such a formula is a Σ1 Borel set
(an open set) and has a satisfiability problem is recursively enumerable, thus in
the level Σ1 of the arithmetic hierarchy. How far does this correspondence go? Is
it true that a universal system is always universal for a family of Σ1 formulae?

If the symbolic space is endowed with a probability measure (not necessarily
invariant for the map), then we would like to check whether a formula is satisfied
with positive probability. This can yield a probabilistic definition of universality.
How does it relate to the definition developed in this paper?

Can our definition be extended to analog systems? Do the results of Section
6 still apply in this context? For instance, hyperbolic systems are known to have
the effective shadowing property. This would suggest that hyperbolic systems
are not universal.

References

1. Siegelmann, H.: Neural Networks and Analog Computation: Beyond the Turing
Limit. Progress in Theoretical Computer Science. Springer-Verlag (1999)

2. Wolfram, S.: A New Kind of Science. Wolfram Media (2002)
3. Moore, C.: Unpredictability and undecidability in dynamical systems. Physical

Review Letters 64 (1990) 2354–2357
4. Siegelmann, H., Fishman, S.: Analog computation with dynamical systems. Phys-

ica D 120 (1998) 214–235
5. Bournez, O., Cosnard, M.: On the computational power of dynamical systems and

hybrid systems. Theoretical Computer Science 168 (1996) 417–459

Computational Universality in Symbolic Dynamical Systems 115

6. Asarin, E., Bouajjani, A.: Perturbed Turing machines and hybrid systems. In:
Proceedings of the 6th IEEE Symposium on Logic in Computer Science (LICS’01),
Boston, USA, IEEE (2001)

7. Maass, W., Orponen, P.: On the effect of analog noise in discrete-time analog
computations. Neural Computation 10 (1998) 1071–1095

8. Gacs, P.: Reliable cellular automata with self-organization. In: IEEE Symposium
on Foundations of Computer Science. (1997) 90–99

9. Orponen, P.: A survey of continuous-time computation theory. In Du, D.Z., Ko,
K.I., eds.: Advances in Algorithms, Languages, and Complexity. Kluwer Academic
Publishers (1997) 209–224

10. Moore, C.: Finite-dimensional analog computers: Flows, maps, and recurrent neu-
ral networks. In Calude, C., Casti, J., Dinneen, M., eds.: Unconventional Models
of Computation, Springer-Verlag (1998)

11. Moore, C.: Dynamical recognizers: real-time language recognition by analog com-
puters. Theoretical Computer Science 201 (1998) 99–136

12. Mitchell, M., Hraber, P., Crutchfield, J.: Dynamic computation, and the “edge of
chaos”: A re-examination. In Cowan, G., Pines, D., Melzner, D., eds.: Complex-
ity: Metaphors, Models, and Reality. Santa Fe Institute Proceedings, Volume 19,
Addison-Wesley (1994) 497–513 Santa Fe Institute Working Paper 93-06-040.

13. Crutchfield, J., Young, K.: Computation at the onset of chaos. In Zurek, W.,
ed.: Complexity, Entropy and the Physics of Information. Addison-Wesley (1989)
223–269

14. Langton, C.: Computation at the edge of chaos. Physica D 42 (1990) 12–37
15. Moore, C.: Generalized shifts: Unpredictability and undecidability in dynamical

systems. Nonlinearity 4 (1991) 199–230
16. Weihrauch, K.: Computable Analysis. Springer-Verlag (2000)
17. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University

Press (2001)
18. Davis, M.: A note on universal Turing machines. In Shannon, C., McCarthy, J.,

eds.: Automata Studies. Princeton University Press (1956) 167–175
19. Conway, J.: Unpredictable iterations. In: Proceedings of the 1972 Number Theory

Conference, Boulder, Colorado (1972) 49–52
20. Durand, B., Róka, Z.: The game of life: universality revisited. In Delorme, M.,

Mazoyer, J., eds.: Cellular Automata: a Parallel Model. Volume 460 of Mathematics
and its Applications. Kluwer Academic Publishers (1999) 51–74

21. Kůrka, P.: Languages, equicontinuity and attractors in cellular automata. Ergodic
Theory & Dynamical Systems 17 (1997) 417–433

22. Kůrka, P.: On topological dynamics of Turing machines. Theoretical Computer
Science 174 (1997) 203–216

23. Devaney, R.: An Introduction to Chaotic Dynamical Systems. Addison-Wesley
(1989)

24. Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s definition
of chaos. American Mathematics Monthly 99 (1992) 332–334

Real Recursive Functions and Real Extensions of

Recursive Functions

Olivier Bournez and Emmanuel Hainry

LORIA/INRIA, 615 Rue du Jardin Botanique
54602 Villers-Lès-Nancy, FRANCE

{Olivier.Bournez,Emmanuel.Hainry}@loria.fr

Abstract. Recently, functions over the reals that extend elementarily
computable functions over the integers have been proved to correspond
to the smallest class of real functions containing some basic functions
and closed by composition and linear integration.
We extend this result to all computable functions: functions over the
reals that extend total recursive functions over the integers are proved
to correspond to the smallest class of real functions containing some
basic functions and closed by composition, linear integration and a very
natural unique minimization schema.

1 Introduction

The power of digital discrete time models of computations is rather well under-
stood: all reasonable and sufficiently powerful digital discrete time models have
the same power thanks to Turing’s work and so-called Church thesis.

For analog models the situation is far from being so clear. Several models
have been defined (e.g. the General Purpose Analog Computer (GPAC) model
of Shannon [28], neural network models [29,24], hybrid systems [3,4], or the-
oretical physic models [11,15,23],. . .) but there are only few results concerning
relations between their respective computational power: GPAC computable func-
tions have been characterized mathematically as differentially algebraic functions
[12,18,25,28] but this does not provide directly a way to understand the rela-
tions between the power of such machines compared to classical discrete ma-
chines. Several other analog models have been shown to exhibit super-Turing
computational power: using the so-called Zeno’s paradox, some models make it
possible to compute non-Turing computable functions in a constant time: see
e.g. [3,5,11,15,19]; the continuity of the space makes it sometimes possible to
have models whose power is close to non-uniform complexity classes [29].

Since the progress of electronics and other domains of physics such as mechan-
ics or optics makes the construction of some of the machines realistic, clarifying
the situation becomes a crucial matter.

In [19], Moore introduced a class of functions over the reals inspired from the
classical characterization of computable functions over integers: observing that
the continuous analog of a primitive recursion is a differential equation, Moore

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 116–127, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Real Recursive Functions and Real Extensions of Recursive Functions 117

proposes to consider the class of R-recursive functions, defined as the smallest
class of functions containing some basic functions, and closed by composition,
differential equation solving (called integration), and minimization. The mini-
mization schema of [19] makes it possible to use a “compression trick” (another
incarnation of Zeno’s paradox) to simulate in a bounded time an unbounded
number of discrete transitions in order to recognize arithmetical (hence non-
Turing-computable) reals [19].

Actually, the original definitions of [19] suffer from several technical problems
that appear as soon as the minimization schema is used (see e.g. discussions in
[19,9,10,20,21]), and it has been proposed to replace minimization schema by a
limit schema to have well-defined classes of functions as in [20,21], or to restrict
to functions defined without minimization schema as in [10,12].

Concerning second approach, in his PhD dissertation [10], Campagnolo pro-
poses to consider a class L of real-functions built in analogy with the class of
elementarily computable functions in classical discrete computability: class L
is defined as the smallest class of functions containing some well-chosen basic
functions and closed by composition and linear integration.

Class L is proved by Campagnolo et al. to be related to functions elementarily
computable over the integers in classical recursion theory: any function over the
integers elementary in the sense of classical recursion theory is the restriction to
integers of a function that belongs to L [10,9]; any function in L that preserves
integers has its restriction to integers elementarily computable [10,9].

This paper proves that this is indeed possible to define a reasonable mini-
mization schema to get a class, that we call L+!μ, that corresponds in a similar
way to all (i.e. not necessarily elementary) computable functions over the inte-
gers : we prove that any total recursive function over the integers is the restriction
to integers of a function that belongs to L+!μ, and that any function in L+!μ
that preserves integers has its restriction to integers total recursive.

Concerning, classical discrete computability, we get a new original character-
ization of computable functions in terms of restrictions to integers of a natural
class of functions over the reals.

Concerning analog models, our results relate the computational power of
some algebraically defined classes of functions over the reals to classical discrete
models, and hence contribute to understand computations over the reals, or at
least to understand the computational power of R-(sub)-recursive functions.

Furthermore the problem we solve is in some sense the definition of a mini-
mization operator, which is strong enough to get at least Turing machine power,
but not too strong to get the technical problems of [19], nor non-robust super-
Turing Zeno phenomena of [3,5,11,15,19]. In that sense, we believe that our
results may be a step toward understanding criteria that could guarantee “ro-
bustness” for continuous models as sought by papers like [2,14].

Moreover, we think that that our results could be a first step toward getting
an algebraic characterization of functions over the real numbers computable in
the sense of recursive analysis, in the spirit of [6], and alternative to [7,8].

118 O. Bournez and E. Hainry

2 Preliminaries

2.1 Mathematical Preliminaries

Let N, Q, R, denote the set of natural integers, the set of rational numbers, and
the set of real numbers respectively. Given x ∈ Rn, we write −→x to emphasize
that x is a vector.

Lemma 1 (Bounding Lemma for Linear Differential Equations (see
e.g. [1])). For linear differential equation −→x ′ = A(t)−→x , if A is defined and
continuous on interval I = [a, b], where a ≤ 0 ≤ b, then, for all −→x 0, the solution
of −→x ′ = A(t)−→x with initial condition −→x (0) = −→x 0 is defined and unique on I.
Furthermore, the solution satisfies ‖−→x (t)‖ ≤ ‖−→x 0‖ exp(supτ∈[0,t] ‖A(τ)‖t).

Lemma 2 (Implicit Functions Theorem (see e.g. [26])). Let f : Rk+1 →
R be a function of class Ck, for k ≥ 1. Assume that for all −→x , the equation
f(−→x , y) = 0 has exactly one solution y. Assume for all −→x that ∂f

∂y (−→x , y) �= 0
in the corresponding root y. Then function g : Rk → R that maps −→x to the
corresponding root y is also of class Ck.

2.2 Classical Recursion Theory

Classical recursion theory deals with functions over integers. Most classes of clas-
sical recursion theory can be characterized as closures of a set of basic functions
by a finite number of basic rules to build new functions [27,22]: given a set F of
functions and a set O of operators on functions (an operator is an operation that
maps one or more functions to a new function), [F ;O] will denote the closure of
F by O.

Proposition 1 (Classical settings: see e.g. [27,22]). Let f be a function
from Nk to N for k ∈ N. Function f is

– elementary iff it belongs to E = [0, S, U,+,(; COMP,BSUM,BPROD];
– primitive recursive iff it belongs to PR = [0, U, S; COMP,REC];
– total recursive iff it belongs to Rec = [0, U, S; COMP,REC,MU].

A function f : Nk → Nl is elementary (resp: primitive recursive, total recur-
sive) iff its projections are elementary (resp: primitive recursive, total recursive).

The basic functions 0, (Um
i)i,m∈N, S,+,(and the operators BSUM, BPROD,

COMP, REC, MU are given by

1. 0 : N → N, 0 : n $→ 0; Um
i : Nm → N, Um

i : (n1, . . . , nm) $→ ni; S : N →
N, S : n $→ n + 1; + : N2 → N, + : (n1, n2) $→ n1 + n2; (: N2 → N,
(: (n1, n2) $→ max(0, n1 − n2);

2. BSUM : bounded sum. Given f , h = BSUM(f) is defined by h : (−→x , y) $→∑
z<y f(−→x , z); BPROD : bounded product. Given f , h = BPROD(f) is

defined by h : (−→x , y) $→
∏

z<y f(−→x , z);

Real Recursive Functions and Real Extensions of Recursive Functions 119

3. COMP : composition. Given f1, . . . , fp and g, h = COMP(f1, . . . , fp; g) is
defined as the function verifying h(−→x) = g(f1(−→x), . . . , fp(−→x));

4. REC : primitive recursion . Given f and g, h = REC(f, g) is defined as the
function verifying h(−→x , 0) = f(−→x) and h(−→x , n + 1) = g(−→x , n, h(−→x , n)).

5. MU : minimization. Given a function f such that for all −→x , there is a y
with f(−→x , y) = 0, the minimization of f is μf : −→x $→ inf{y; f(−→x , y) = 0}.
Observe that we consider here only total functions. Furthermore, observe that

minimization operator can actually be reinforced into a unique minimization
operator as follows:

Proposition 2. A function f from Nk to Nl, for k, l ∈ N, is total recursive
iff its projections belong to [0, U, S; COMP,REC,UMU] where operator UMU is
defined as follows:

1. UMU: unique minimization. Given f such that for all −→x there is a unique
y with f(−→x , y) = 0, the unique minimization of f is defined as the function,
denoted by !μ(f)(−→x , y), that maps −→x to that unique y, for all −→x .

Proof. The inclusion [0, U, S; COMP,REC,UMU] ⊂ Rec is immediate. Con-
versely, let φ be a function from Rec. It is well known [16,27] that φ can be
written as φ = χ ◦ μ(ψ) with χ and ψ in E and such that for all −→x , there
is at least a y with ψ(−→x , y) = 0 (recall that φ is total). Let σ be the ele-
mentary function defined by σ(m,n) =

∏
z<n ψ(m, z). Given m, let us note

n0 = μ(ψ)(m). We have ∀n ≤ n0, σ(m,n) �= 0 and ∀n > n0, σ(m,n) = 0. Let
κ(m,n) = 1 ((1 (((1 (σ(m,n)) + σ(m,n + 1))). We have clearly ∀n < n0,
κ(m,n) = 1, κ(m,n0) = 0 and ∀n > n0, κ(m,n) = 1, hence μ(κ) =!μ(κ) = μ(ψ).
κ is an elementary function and we have φ = χ◦!μ(κ), hence φ belongs to
[0, U, S; COMP,REC,UMU].

We have E ⊆ PR ⊆ Rec, and the inclusions are known to be strict [27,22].
If TIME(t) and SPACE(t) denote the classes of functions that are computable
with time and space t, then, PR = TIME(PR) = SPACE(PR) [27,22]. Class
PR corresponds to functions computable using For-Next programs. Class E cor-
responds to computable functions bounded by some iterate of the exponential
function [27,22].

In classical computability, more general objects than functions over the inte-
gers can be considered, in particular functionals, i.e. functions Φ : (Nm)N×Nk →
Nl. A functional will be said to be elementary (or primitive recursive, recursive)
when it belongs to the corresponding1 class.
1 Formally, a function f over the integers can be considered as functional f : (V,−→n) �→

f(−→n). Similarly, an operator Op on functions f1, . . . , fm over the integers can be
extended to argument Op(F1, . . . , Fm) : (V,−→n) �→ Op(f1(V, .), . . . , fm(V, .))(−→n).

In that spirit, given some set F of basic functions Nk → Nl and a set O
of operators on functions over the integers, we will still (abusively) denote by
[f1, . . . , fp; O1, . . . , Oq] for the smallest class of functionals that contains basic func-
tions f1, . . . , fp, plus the functional Map : (V, n) → Vn, the nth element of sequence
V , and which is closed by the operators O1, . . . , Oq . For example, a functional will be
said elementary iff it belongs to E = [Map, 0, S, U, +,	; COMP, BSUM, BPROD].

120 O. Bournez and E. Hainry

3 Computable Analysis

The idea sustaining computable analysis, also called recursive analysis, is to
define computable functions over real numbers by considering functionals over
fast-converging sequences of rationals [30,17,13,31].

Let νQ : N → Q be the following representation2 of rational numbers by
integers: νQ(〈p, r, q〉) $→ p−r

q+1 , where 〈., ., .〉 : N3 → N is a computable bijection.
A sequence of integers (xi) ∈ NN represents a real number x if (νQ(xi))

converges quickly toward x (denoted by (xi) � x) in the following sense :
∀i, |νQ(xi)− x| < 2−i. For (xi) ∈ (Nk)N, we write (xi) � x when it holds
componentwise.

Definition 1 (Recursive analysis [31]). A function f : Rk → R is said com-

putable (or real-computable) if there exists a recursive functional Φ : (Nk)N ×
N → N such that for all −→x ∈ Rk, for all sequence X = (−→x n) ∈ (Nk)N, we have
(φ(X, j))j � f(−→x) whenever X � −→x . A function f : Rk → Rl, with l > 1, is
said computable if all its projections are.

A function f will be said elementarily computable whenever the correspond-
ing functional Φ is. The class of computable (respectively elementarily com-
putable) functions over the reals will be denoted by Rec(R) (resp. E(R)).

4 Real-Sub-recursive and Sub-recursive Functions

Following the original ideas from [19], but avoiding the minimization schema
of [19] source of many problems, Campagnolo proposed in [10] to consider the
following class, built in analogy with elementarily computable functions over the
integers.

Definition 2 ([10,9]). Let L be the class of functions f : Rk → Rl, for some
k, l ∈ N, defined by L = [0, 1,−1, π, U, θ3; COMP,LI] where the basic functions
0, 1, −1, π, (Um

i)i,m∈N, θ3 and the schemata COMP and LI are the following:

1. 0, 1,−1, π are the corresponding constant functions; Um
i : Rm → R are, as

in the classical settings, projections: Um
i : (x1, . . . , xm) $→ xi;

2. θ3 : R→ R is defined as θ3 : x $→ x3 if x ≥ 0, 0 otherwise;
3. COMP: composition is defined as in the classical settings: Given f1, . . . , fp

and g, h = COMP(f1, . . . , fp; g) is defined by h(−→x)=g(f1(−→x), . . . , fp(−→x));
4. LI: linear integration. From g and h, LI(g, h) is the maximal solution of

the linear differential equation ∂f
∂y (−→x , y) = h(−→x , y)f(−→x , y) with f(−→x , 0) =

g(−→x).
In this schema, if g goes to Rn, f = LI(g, h) also goes to Rn and h(−→x , y) is
a n× n matrix with elements in L.

2 Many other natural representations of rational numbers can be chosen and provide
the same class of computable functions: see [31].

Real Recursive Functions and Real Extensions of Recursive Functions 121

Class L includes common functions like +,sin,cos,−,×,exp, or x → r for all
r ∈ Q (see [10,9]), but contains only total functions [9]:

Proposition 3 ([9]). All functions from L are continuous, defined everywhere,
and of class C2.

Actually, observing the proofs from [10,9], schema LI can be strengthened as
follows:

Proposition 4. Class L is also the class of functions f : Rk → Rl, for some
k, l ∈ N, defined by L = [0, 1,−1, π, U, θ3; COMP,CLI] where CLI is the following
schema:

1. CLI: controlled linear integration. From g and h, and c, with h differentiable
and entries of h′ bounded by c, CLI(g, h, c) is the maximal solution of the lin-
ear differential equation ∂f

∂y (−→x , y) = h(−→x , y)f(−→x , y) with f(−→x , 0) = g(−→x).
In this schema, if g goes to Rn, f = CLI(g, h, c) also goes to Rn and h(−→x , y)
is a n× n matrix with elements in L.

Class L can be related to the class E of elementarily computable functions
over the integers. A real extension f̃ of a function f : Nk → Nl over the integers is
a function f̃ from Rk to Rl whose restriction to Nk is f . Observe that a function
f̃ : Rk → Rl over the reals is an extension of a function over the integers iff its
preserves integers: f̃(Nk) ⊂ Nl.

Definition 3 (Discrete Part). Given a class C of real functions, we denote by
DP (C) the class of functions over the integers that have a real extension in C.

Proposition 5 ([10,9]). E = DP (L). I.e.:

– If a function from L extends some functions over the integers, this latter
function is elementarily computable.

– Any elementarily computable function over the integers, has a real extension
that belongs to L.

Actually, class L can also be partially related to the class E(R) of functions
over the real numbers elementarily computable in the sense of recursive analysis:
any function from L is in E(R) [10,9]. We proved in [6] that the inclusion is
actually strict, but that adding a limit schema to class L, allows us to capture
whole class E(R) for functions defined over a compact domain.

5 Real-Recursive and Recursive Functions

We are now going to extend the class L with a minimization schema in order to
get a class whose discrete part correspond to total recursive functions over the
integers.

To do so, we need to introduce a zero-finding operator that permits to simu-
late the classical discrete minimization schema over the integers. However, this

122 O. Bournez and E. Hainry

operator needs to be stricter than a simple “return the smallest root” since this
idea, investigated in [19], has shown to be the source of numerous problems, in-
cluding ill-defined problems and super-Turing Zeno phenomena [10,9,21,20,19].

Our idea is to use the alternative UMU schema which is equivalent to schema
MU for classical computability, but has real counterparts which turn out to
preserve real computability.

Indeed, motivated by Proposition 2, by Lemma 2, and by results from re-
cursive analysis about the computability of zeros (see e.g. [31]), we define our
unique-zero-finding operator UMU as follows (observe that we also take schema
CLI instead of schema LI, which is equivalent when schema UMU is not present):

Definition 4. Given a differentiable function f from Rk+1 to R , if for all
−→x , y $→ f(−→x , y) is a non-decreasing function with a unique root y0, on which
∂f
∂y (−→x , y0) > 0, then UMU(f) is defined as follows:

UMU(f) :
{

Rk −→ R
−→x $→ y0 such that f(−→x , y0) = 0

Let L+!μ be the set of functions defined by

L+!μ = [0, 1, U, θ3; COMP,CLI,UMU].

Lemma 3. L ⊂ L+!μ.

Proof. (sketch) We only need to prove that constant functions −1 and π are
in L+!μ. Indeed, −1 is the unique root of x $→ x + 1, and π = 4 arctan(1),
where arctan(x) is the solution of linear differential equation arctan(0) = 0
and arctan′(x) = 1

1+x2 , and x $→ 1
1+x2 can be obtained by applying UMU on

x, y $→ (1 + x2)y − 1.

Lemma 4. All functions from L+!μ are of class C2 and total.

Proof. By structural induction. Basic functions 0, 1, U , θ3 are total and of class
C2. Now, class C2 and totality are preserved by composition, by linear integration
(see e.g. [1]), and by schema UMU by Lemma 2.

Now, observe that operator UMU preserves real computability:

Lemma 5. Given f : Rk+1 −→ R real computable, if UMU(f) is defined, then
UMU(f) is also real computable.

Proof. Given −→x ∈ Rk, let y0 be the unique y0 with f(−→x , y0) = 0. Since f(−→x , .)
is continuous, non-decreasing, and with a unique root, we have f(−→x , y) < 0 for
y < y0, and f(−→x , y) > 0 for y > y0.

There exists m ∈ N, such that f(−→x ,−m) < 0 and f(−→x ,m) > 0: one just
need to take any integer m with −m < y0 < m. Actually, such an m can be
computed as follows:

Real Recursive Functions and Real Extensions of Recursive Functions 123

m = 1
Repeat

Compute f1 = f(−→x ,m) and f2 = f(−→x ,−m) at p r e c i s i o n ±2−m

m = m + 1
Until (f1 > 2−m and f2 < −2−m)
Return m

Indeed, given any integer m0 ∈ N with −m0 < y0 < m0, (take for example
)|y0|*+ 1), we have for all m ≥ m0, f(−→x ,m) ≥ f(−→x ,m0) > 0 and f(−→x ,−m) ≤
f(−→x ,−m0) < 0. Now, for m big enough (i.e. m ≥ m0, 2−m ≤ |f(−→x ,−m0)|, and
2−m ≤ |f(−→x ,m0)|) we have f1 > 2−m and f2 < −2−m and the algorithm stops
with an m such that f(−→x ,−m) < 0 and f(−→x ,m) > 0.

Computing y0 then reduces to compute the unique root of function f(−→x , .)
over a compact [−m,m]. The fact that this is indeed computable can be seen as
a consequence of the results in [31].

Here is a direct proof: given n, we have to find an approximation of y0 at preci-
sion 2−n. Let us slice [−m,m] in 2i closed intervals: [−m,m] = ∪0≤j<2i [yj , yj+1]
where yj = −m + j 2m

2i . Let zj be an approximation of f(−→x , yj) computed at
precision 2−i. We know that for a root to exist in [yj , yj+1], the only possibilities
are that |zj| < 2−i or |zj+1| < 2−i or zjzj+1 < 03. Then, let mi be the yj (resp.
Mi be the yj+1) where index j is the smallest (resp. greatest) integer 0 ≤ j < 2i

with |zj | < 2−i or |zj+1| < 2−i or zjzj+1 < 0.
The sequences (mi) and (Mi) have range in compact sets, so there exist

subsequences (mφ(i)) and (Mφ(i)) that converge, thanks to Bolzano-Weierstrass
theorem. Let m∗ and M∗ be the limits of those sequences. For all i, either
|f(−→x ,mi)| ≤ |f(−→x ,mi)−zj|+|zj| < 2−i+2−i, or |f(−→x ,mi+2−i)| ≤ |f(−→x ,mi)−
zj+1|+ |zj+1| < 2−i+2−i, or f(−→x ,mi)f(−→x ,mi+2−i) < 0. Since f is continuous,
we can deduce that f(−→x ,m∗) = 0. For the same reason, f(−→x ,M∗) = 0 and
since y $→ f(−→x , y) has only one root, m∗ = M∗. So, there exists i such that
Mi −mi < 2−n. When this holds, mi is an approximation at precision 2−n of
the root. This means that the following algorithm terminates and returns an
approximation of y0 at precision 2−n.

i = 0
Repeat

Compute mi and Mi

i = i + 1
Until Mi −mi < 2−n

Return mi

Lemma 6. Given h, g and c real computable, then f = CLI(g, h, c) is also real
computable.

3 In fact, since the function we are investigating is non-decreasing, we could have more
accurate constraints, however these ones are sufficient.

124 O. Bournez and E. Hainry

Proof. Observing carefully [10,9], if given −→x ∈ Rk and some y ∈ Q one can
bound effectively the norms of h(−→x , y), f(−→x , y), ∂2f

∂y2 (−→x , y) for |y| ≤ y, then
f will be real computable: use the constructions and bounds based on Euler’s
method to prove preservation of elementarily computability by linear integration
in [10,9], but replacing elementary bounds by computable bounds.

Now, from [31], it is known that one can bound effectively the norm of any real
computable function on a compact domain, and so we only need to care about
f(−→x , y) and ∂2f

∂y2 (−→x , y). But the norm of f(−→x , y) can be bounded effectively by
Lemma 1 from bounds on the norms of g(−→x) and h(−→x , y) on the correspond-
ing domain, which are computable by previous argument. Now, ‖∂2f

∂y2 (−→x , y)‖ =
‖(h2(−→x , y)+ ∂h

∂y (−→x , y))f(−→x , y)‖, hence is bounded by (‖h2(−→x , y)‖+‖c(−→x , y))‖)×
‖f(−→x , y)‖. First factor can still be bounded effectively since h2(−→x , y) and c(−→x , y)
are particular real computable functions, and we just see that second factor can
be bounded effectively.

From previous two Lemmas, the fact that basic functions are real computable
and observing that composition is known to preserve real computability for total
functions (see [31]), we obtain:

Theorem 1. Every function belonging to L+!μ is real computable.

We now prove the converse direction. Following lemma is a weaker form of a
Lemma that we proved in [6]:

Lemma 7. Given f : R2 → R in L, there exists f̃ : R2 → R in L such that
∀(m,n) ∈ N2, ∀(x, y) ∈ R2,

– f̃(m,n) = f(m,n)
– f̃(m, y) ∈ [f(m,)y*), f(m,)y + 1*)] (or [f(m,)y + 1*), f(m,)y*)]).
– f̃(x, n) ∈ [f()x*, n), f()x + 1*, n)] (or [f()x + 1*, n), f()x*, n)]).

Proof. Let ζ = 3π
2 . Let ω : x $→ ζθ3(sin(2πx)). ∀i,

∫ i+1

i
ω = 1 and ω is equal to 0

on [i+ 1
2 , i+1] for i ∈ N. Let Ω its primitive equal to 0 in 0, and int : x $→ Ω(x− 1

2).
Function int is a function similar to the integer part: ∀i ∈ N, ∀x ∈ [i, i + 1

2],
int(x) = i =)x*. Figure 1 shows graphical representations of ω and int.

Let Δ(i, y) = f(i, y + 1) − f(i, y). Then for all i ∈ N, y ∈ R, we have

ω(y)Δ(i, int(y)) =
{

0 whenever y −)y* ≥ 1/2
ω(y)Δ(i,)y*) otherwise.

Let G be the solution of the linear differential equation G(x, 0) = f(x, 0),
∂G
∂y (x, y) = ω(y)Δ(x, int(y)). An easy induction on j then shows that G(i, j) =
f(i, j) for all integer j. Furthermore, by construction, ∀i ∈ N, G(i, y) belongs to
the interval delimited by G(i,)y*) = f(i,)y*) and G(i,)y + 1*) = f(i,)y + 1*).

Now, let f̃ be the solution of the linear differential equation f̃(0, j) = G(0, j),
∂f̃
∂x (x, y) = ω(x)(G(int(x + 1), y)−G(int(x), y)). We have ∀(i, j) ∈ N2, f̃(i, j) =
f(i, j). And ∀i ∈ N, f̃(i, y) belongs to the interval delimited by f̃(i,)y*) =
f(i,)y*) and f̃(i,)y + 1*) = f(i,)y + 1*). And also, ∀j ∈ N, f̃(x, j) belongs to
the interval delimited by f̃()x*, j) = f()x*, j) and f̃()x + 1*, j) = f()x+ 1*, j).

Real Recursive Functions and Real Extensions of Recursive Functions 125

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

-1 0 1 2 3 4

omega(x)

-1

 0

 1

 2

 3

 4

-1 0 1 2 3 4

int(x)

Fig. 1. Graphical representation of ω and int

Theorem 2. Every recursive function over the integers has a real extension in
L+!μ.

Proof. Let φ be a function from Rec. We have φ = χ◦!μ(κ) as in the proof of
Proposition 2. Let ι(m,n) = 2 × (1 (σ(m,n)) + (1 (κ(m,n)) where σ is the
same as in the proof of Proposition 2. ∀m ∈ N, for n = n0 =!μ(κ)(m,n), we have
ι(m,n0) = 1, and before this n0, ι(m,n) is equal to 0 and after this n0, ι(m,n)
is equal to 2. Let i be a real extension of ι in L given by Proposition 5. Let ĩ be
the function from L obtained by Lemma 7 on f(m,x) : m,x $→ i(m,x)− 1.
∀m ∈ N, there exists exactly one y ∈ R (given by y0 =!μ(κ)(m,n)) such

that ĩ(m, y) = 0. But, we can not directly apply schema UMU, since we have
no assurance4 that it also holds for non integer values m. However, from the
constructions in the proof of Lemma 7, given m ∈ N, we have ĩ(m, y) equal to
−1 for y ≤ y0 − 1, and equal to Ω(y) for y ∈ [y0 − 1, y0 + 1], where Ω is defined
in that proof.

ConsiderM(x) = θ3(x + 1). We haveM(x) = 0 if x ≤ −1 and M(x) ≥ 1 if
x ≥ 0. Let us define g̃ as the solution of the differential equation g̃(−→x , 0) = −1,
∂g̃
∂y (−→x , y) = αM(̃i(−→x , y)). Let us choose α (maple says α = 1024

2609) such that

α
∫ 0

−1
M(Ω(x))dx = 1. We have ∀m ∈ N, g̃(m, y) = 0⇔ y =!μ(κ)(m,n).

Then define g as the solution of the linear differential equation g(−→x , 0) = −1,
∂g
∂y (−→x , y) = βM(g̃(−→x , y)). If we choose β adequately5 (maple says β = aπ4

bπ4−cπ2+d

for some integers a, b, c, d) , we will still have ∀m ∈ N, g(m, y) = 0 ⇔ y =
!μ(κ)(m,n).

The point is that, since M is always non-negative, we know that ∀x ∈ R,
y $→ g̃(x, y) is non-decreasing, and, because of Lemma 7, and from the definition
of function M(x), it must go to infinity when y goes to infinity. Actually, it
must be equal to −1 up to a certain value y−, then be strictly increasing, and
since it goes to infinity, it must have a root y0 strictly greater than y−. Now the
derivative in this root y0 cannot be 0 since M(x) is zero only when x ≤ −1.

4 Actually, another problem is that the derivative relative to the second variable in
the root point is 0.

5 This β is in L since it can be obtained as a ∗ π4 ∗ UMU(x �→ (bπ4 − cπ2 + d)x − 1).

126 O. Bournez and E. Hainry

This g is such that ∀−→x , ∃!y0 such that g(−→x , y0) = 0 and ∂g
∂y (−→x , y0) �= 0 and

for all −→x , y $→ g(−→x , y) is non-decreasing. We can thus apply UMU to this g.
Now if we extend χ in a real function h belonging to L using Proposition 5, we
have h ◦UMU(g) extending φ = χ ◦ μ(ψ) and belonging to L+!μ.

From previous two theorems, we obtain the main result of this paper:

Theorem 3. Rec = DP (L+!μ). I.e:

– If a function from L+!μ extends some function over the integers, this latter
function is total recursive.

– Any total recursive function over the integers, has a real extension that be-
longs to L+!μ.

Proof. The second item is Theorem 2. The first item is immediate from Theorem
1: if a function f belonging to L+!μ preserves integers, then a recursive function
that equals f on Nk can easily be obtained from the functional computing f .

Corollary 1. L is strictly included in L+!μ.

References

1. V. I. Arnold. Ordinary Differential Equations. MIT Press, 1978.
2. E. Asarin and A. Bouajjani. Perturbed Turing machines and hybrid systems. In

Logic in Computer Science, pages 269–278, 2001.
3. E. Asarin and O. Maler. Achilles and the tortoise climbing up the arithmetical

hierarchy. Journal of Computer and System Sciences, 57(3):389–398, dec 1998.
4. O. Bournez. Achilles and the Tortoise climbing up the hyper-arithmetical hierarchy.

Theoretical Computer Science, 210(1):21–71, 6 1999.
5. O. Bournez. Complexité Algorithmique des Systèmes Dynamiques Continus et Hy-

brides. PhD thesis, Ecole Normale Supérieure de Lyon, Janvier 1999.
6. O. Bournez and E. Hainry. An analog characterization of elementary computable

functions over the real numbers. In International Colloquium on Automata, Lan-
guages and Programming (ICALP 2004), volume 3142 of Lecture Notes in Com-
puter Science, pages 269–280, 2004.

7. V. Brattka. Recursive characterizations of computable real-value functions and
relations. Theoretical Computer Science, 162(1):45–77, 5 August 1996.

8. V. Brattka. Computability over topological structures. In S. B. Cooper and S. S.
Goncharov, editors, Computability and Models, pages 93–136. Kluwer Academic
Publishers, New York, 2003.

9. M. Campagnolo, C. Moore, and J. F. Costa. An analog characterization of the
Grzegorczyk hierarchy. Journal of Complexity, 18(4):977–1000, 2002.

10. M. L. Campagnolo. Computational complexity of real valued recursive functions
and analog circuits. PhD thesis, Universidade Técnica de Lisboa, 2001.

11. G. Etesi and I. Németi. Non-Turing computations via Malament-Hogarth space-
times. International Journal Theoretical Physics, 41:341–370, 2002.

12. D. Graça and J. F. Costa. Analog computers and recursive functions over the reals.
Journal of Complexity, 19:644–664, 2003.

Real Recursive Functions and Real Extensions of Recursive Functions 127

13. A. Grzegorczyk. Computable functionals. Fundamenta Mathematicae, 42:168–202,
1955.

14. T. Henzinger and J.-F. Raskin. Robust undecidability of timed and hybrid sys-
tems. Hybrid Systems: Computation and Control; Second International Workshop,
HSCC’99, Berg en Dal, The Netherlands, march 29–31, 1999; proceedings, 1569,
1999.

15. M. L. Hogarth. Does general relativity allow an observer to view an eternity in a
finite time? Foundations of Physics Letters, 5:173–181, 1992.

16. L. Kalmár. Egyszerü példa eldönthetetlen aritmetikai problémára. Mate és fizikai
lapok, 50:1–23, 1943.

17. D. Lacombe. Extension de la notion de fonction récursive aux fonctions d’une ou
plusieurs variables réelles III. Comptes rendus de l’Académie des Sciences Paris,
241:151–153, 1955.

18. L. Lipshitz and L. A. Rubel. A differentially algebraic replacement theorem,
and analog computability. Proceedings of the American Mathematical Society,
99(2):367–372, February 1987.

19. C. Moore. Recursion theory on the reals and continuous-time computation. The-
oretical Computer Science, 162(1):23–44, 5 1996.

20. J. Mycka. Infinite limits and R-recursive functions. Acta Cybernetica, 16:83–91,
2003.

21. J. Mycka. μ-recursion and infinite limits. Theoretical Computer Science, 302:123–
133, 2003.

22. P. Odifreddi. Classical recursion theory II. North-Holland, 1999.
23. T. Ord. Hypercomputation: computing more than the Turing machine. Technical

report, University of Melbourne, september 2002. See
http://www.arxiv.org/abs/math.lo/0209332.

24. P. Orponen. A survey of continuous-time computation theory. In D.-Z. Du and K.-
I. Ko, editors, Advances in Algorithms, Languages, and Complexity, pages 209–224.
Kluwer Academic Publishers, Dordrecht, 1997.

25. M. B. Pour-El. Abstract computability and its relation to the general purpose
analog computer (some connections between logic, differential equations and analog
computers). Transactions of the American Mathematical Society, 199:1–28, 1974.

26. E. Ramis, C. Deschamp, and J. Odoux. Cours de mathématiques spéciales, tome
3, topologie et éléments d’analyse. Masson, feb 1995.

27. H. Rose. Subrecursion: functions and hierarchies. Clarendon Press, 1984.
28. C. E. Shannon. Mathematical theory of the differential analyser. Journal of Math-

ematics and Physics MIT, 20:337–354, 1941.
29. H. Siegelmann. Neural networks and analog computation - beyond the Turing limit.

Birkauser, 1998.
30. A. Turing. On computable numbers, with an application to the ”Entscheidungs-

problem”. In Proceedings of the London Mathematical Society, volume 2, pages
230–265, 1936.

31. K. Weihrauch. Computable analysis. Springer, 2000.
32. Q. Zhou. Subclasses of computable real valued functions. Lecture Notes in Com-

puter Science, 1276:156–165, 1997.

Ordering and Convex Polyominoes

Giusi Castiglione and Antonio Restivo

University of Palermo, Dipartimento di Matematica e Applicazioni,
Via Archirafi 34, 90123 Palermo, Italy

{giusi,restivo}@math.unipa.it

Abstract. We introduce a partial order on pictures (matrices), denoted
by
 that extends to two dimensions the subword ordering on words. We
investigate properties of special families of discrete sets (corresponding
to {0, 1}-matrices) with respect to this partial order. In particular we
consider the families of polyominoes and convex polyominoes and the
family, recently introduced by the authors, of L-convex polyominoes.
In the first part of the paper we study the closure properties of such
families with respect to the order. In particular we obtain a new char-
acterization of L-convex polyominoes: a discrete set P is a L-convex
polyomino if and only if all the elements Q
 P are polyominoes.
In the second part of the paper we investigate whether the partial order-
ings introduced are well-orderings. Since our order extends the subword
ordering, which is a well-ordering (Higman’s theorem), the problem is
whether there exists some extension of Higman’s theorem to two dimen-
sions. A negative answer is given in the general case, and also if we
restrict ourselves to polyominoes and even to convex polyominoes. How-
ever we prove that the restriction to the family of L-convex polyominoes
is a well-ordering. This is a further result that shows the interest of the
notion of L-convex polyomino.

1 Introduction

In the study of computational models working on two-dimensional grids, com-
binatorial properties of picture play an important role. In this paper we study
properties of significant families of matrices (pictures) over a finite alphabet with
respect to the following order relation: given two matrices P and Q , we say that
P + iff P can be obtained from Q by deleting some rows and/or columns. This
is a very natural order relation on matrices: it generalizes to two dimensions
the notion of (scattered) subword of a word, a notion that has been largely in-
vestigated in combinatorics on words and in formal language theory (cf. [13]).
Moreover, such a partial ordering has been considered in [14] for the definition
and the study of some special families of picture languages. More generally, dele-
tion (and insertion) are fundamental operations in computational processes in
words and pictures.

Discrete sets, i.e. finite subsets of Z2, correspond to {0, 1}-matrices. The most
frequently used properties of discrete sets are connectedness and convexity. Such
properties lead to the notions of polyominoes and convex polyominoes, that have

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 128–139, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Ordering and Convex Polyominoes 129

been extensively investigated both from combinatorial and the algorithmic point
of view (cf. [1], [2], [12]).

Recently, a special subclass of convex polyominoes has been introduced by the
authors. Their elements are called L-convex Polyominoes and they have striking
properties as to concern both their reconstruction and their enumeration (cf. [3],
[4]).

This paper investigates properties of different classes of discrete sets, with
respect to the partial ordering given above. In particular, in Sec. 3.2 we study
the down-sets corresponding to the classes of polyominoes, convex polyominoes
and L-convex polyominoes. As a main result of this section, we obtain a purely
order-theoretic characterization of L-convex polyominoes: a polyomino P is L-
convex if and only if, for any discrete set Q such that Q + P , one has that Q is
a polyomino too.

An important notion on partial ordering, from the viewpoint of our consid-
erations, is that of well-ordering, i.e. a partial ordering in which every set of
pairwise incomparable elements is finite. There exist various characterizations
of this concept which was often rediscovered by different authors (cf. [9], [11]).
Well quasi-orders are important in mathematics and in many areas of theoretical
computer science as well. A basic theorem in such a theory is Higman’s theorem,
stating, in particular that, if we consider the set of words over a finite alphabet,
the subword partial order is a well ordering. Higman’s theorem has been ex-
tended to structures more general than words as, for instance, labelled trees (cf.
[10]) and infinite words (cf. [7]). A natural question is whether such a theorem
can be extended to two-dimensional words (matrices). A negative answer is given
here. Actually, in Sec. 4, we prove a stronger result: the class of convex polyomi-
noes, with the partial order here considered, is not a well-ordering. However, as
main result, of the section, we prove that the class of L-convex polyominoes is a
well-ordering. Such a theorem in one hand provides a non trivial generalization
of Higman’s theorem to an important class of bidimensional objects, on the other
hand it shows more and on the interest of the notion of L-convex polyomino.

2 Preliminaries

In this section we give basic definitions about the class of discrete sets and
polyominoes, we introduce L-convex polyominoes and their properties.

2.1 Discrete Sets and Polyominoes

A discrete set P is a finite subset of the lattice Z2 defined up to translation.
We denote by D the class of discrete sets. Let P ∈ D, and m × n be the size
of the minimal bounding rectangle, so P can be represented as a binary matrix
(Pij)m×n such that

Pij =
{

1 if (i, j) ∈ P
0 otherwise

130 G. Castiglione and A. Restivo

Fig. 1. Polyomino and convex polyomino.

In what follows we denote by (i, j) a generic element of the lattice and by P (i, j)
a generic element of P (i.e. such that Pij = 1) that we call cell of P .

Two cell P (i, j) and P (i′, j′) are adjacent if (i′ = i± 1 and j′ = j) or (i′ = i
and j′ = j ± 1). A path, ΠAB, connecting two cells A and B, is a sequence

(A = (i1, j1), (i2, j2), ..., (ir, jr) = B)

of adjacent cells. The step ((ik, jk), (ik+1, jk+1)) is called:

– an Est step if ik+1 = ik + 1 and jk+1 = jk;
– a North step if ik+1 = hi and jk+1 = jk + 1;
– a West step if ik+1 = hi − 1 and jk+1 = jk;
– a South step if ik+1 = hi and jk+1 = jk − 1.

We say that a path is monotone if it is made with steps in only two directions.
Two cells are connected if they can be connected by a path.

A particular class of discrete sets is the class of polyominoes. A polyomino is a
discrete set in which every cell is connected to each other. The class of polyomi-
noes is here denoted by P . A polyomino is said to be h-convex (resp. v-convex) if
every its row (resp. column) is connected. A polyomino is said to be hv-convex,
or simply convex, if it is both h-convex and v-convex (see Fig. 1). We will denote
by C the class of convex polyominoes.

If Q is a polyomino and we consider a subset of cells with the same property
of connection, we obtain another polyomino P ⊆ Q. Since a polyomino is defined
up to translation we can have two distinct subsets of cells of Q that determines
the same polyomino P . In this case we say that P has two occurrences in Q. In
any case, we say that P is included in Q and we write P ⊆ Q.

2.2 L-convex Polyominoes

Cells of convex polyominoes satisfy a particular connection property stated in
the following Proposition 1 (cf. [3]). Such a result allows to introduce a particular
family of convex polyominoes, called L-convex, defined and studied in [3].

Proposition 1. A polyomino P is convex iff every pair of cells is connected by
a monotone path.

Ordering and Convex Polyominoes 131

Fig. 2. L-convex Polyomino.

A path has a change of direction in the cell (ik, jk), for 2 ≤ k ≤ r − 1, if

ik �= ik−1 ⇐⇒ jk+1 �= jk.

Taking into account maximal number of change of direction in their monotone
paths, we have a classification of convex polyominoes. In particular, we call k-
convex a convex polyomino such that every pair of cells can be connected by a
monotone path with at most k changes of direction. Then, at first level of this
classification we have 1-convex polyominoes called L-convex polyominoes.

Definition 1. An L-convex polyomino P is a convex polyomino in which every
pair of cell is connected by a path with at most one change of direction, for its
shape called L-path(see Fig.2).

We denote by L the class of L-convex polyominoes. It is easy to prove following
lemma.

Lemma 1. Let P ∈ C, P is L-convex if and only if

∀ (i, j), (h, k) ∈ P ⇒ (i, k) ∈ P or (h, j) ∈ P.

There is an important characterization of L-convex polyominoes that takes into
account the position of rectangles that they include.

Fig. 3. The first two are examples of crossing intersection and the third one is
an example of non crossing intersection.

A rectangle, that we denote by [x, y], with x, y ∈ N \ {0}, is a rectangular
polyomino whose dimensions are x and y, respectively. We denote by R the set

132 G. Castiglione and A. Restivo

of rectangles. Given a convex polyomino P , we denote by R(P) = {[x, y]/[x, y] ⊆
P}. We say [x, y] to be maximal in P if

∀ [x′, y′], [x, y] ⊆ [x′, y′] ⊆ P ⇒ [x, y] = [x′, y′]

We denote by Rmax(P) the set of the maximal elements of R(P).

Given two occurrences of the rectangles [x, y] and [x′y′] in a polyomino P ,
respectively, we say that they have a crossing intersection, if their intersection
is a rectangle with basis the smallest of two basis and height the smallest of two
heights. See Fig.3 for example.
The following theorem has been proved in [3].

Theorem 1. A convex polyomino P is L-convex iff every pair of its maximal
rectangles occurs in P with a crossing intersection.

Since two different occurrences of the same maximal rectangle [x, y] in P
should have crossing intersection, as consequence of Theorem 1 we have that
each maximal rectangle of a L-convex polyomino P has a unique occurrence
in P .
In this way we can describe a L-convex polyomino as a finite overlapping of not
comparable rectangles such that any pair of them has a crossing intersection (see
Fig.4 for example).

Fig. 4. L-convex polyomino with four maximal rectangles.

If P is an L-convex polyomino and [x, y] ∈ Rmax(P), with the notation P \ [x, y]
we mean the unique L-convex polyomino included in P such that Rmax(P \
[x, y]) = Rmax(P) \ {[x, y]}.

3 An Order Relation

Let M be the set of matrices (or picture) over a finite alphabet. In (cf.[14]) a
binary relation onM is given as follows.

Ordering and Convex Polyominoes 133

Definition 2. Let P,Q ∈ M such that P has dimension m×n. Then + Q (or P
is subpictureof Q) if there are strictly monotone functions r : {1, ..., n} → N≥1

and c : {1, ...,m} → N≥1 such that Pij = Qr(i)c(j) for all (i, j) ∈ {1, ..., n} ×
{1, ...,m}.

This binary relation is, trivially, transitive, reflexive and antisymmetric then
(M,+) is an ordering. We say that P and Q are comparable if either P + Q or
Q + P ; otherwise we say that they are incomparable.

Example 1. P and Q are two matrices over the finite alphabet Σ = {a, b, c}.

P =

⎛⎝a b c
a b b
c b b

⎞⎠ Q =

⎛⎜⎜⎝
a b b c
b b a b
a a b b
c a b b

⎞⎟⎟⎠
If we consider the strictly monotone functions r, c : {1, 2, 3} → {1, 2, 3, 4} such
that r(1) = c(1) = 1, r(2) = c(2) = 3, r(3) = c(3) = 4, we have that Pij =
Qr(i)c(j), ∀(i, j) ∈ {1, 2, 3} × {1, 2, 3, 4}, then P ≤ Q.

It is clear to observe that P + Q if we can obtain P from Q by deleting some
rows and/or columns.
In the previous example P is obtained from Q by deleting the second row and
the second column.

This definition of subpicture generalizes to two-dimensional languages the
notion of (scattered) subword of a word (cf.[13]). Indeed we can consider a word
as a matrix of size m× 1.

3.1 The Order on the Class of Discrete Sets

In case of binary alphabet we have an order relation between discrete sets and,
in particular, polyominoes. With our notation we can, easily, say that if P and
Q are two discrete sets such that P has dimension m × n, then P ≤ Q if there
are strictly monotone functions r : {1, ..., n} → N≥1 and c : {1, ...,m} → N≥1

such that (i, j) ∈ P ⇔ (r(i), c(j)) ∈ Q, for all (i, j) ∈ {1, ..., n}× {1, ...,m}. See,
for example, in Fig. 5 first polyomino is + than the second one. Indeed we can
obtain first polyomino from the second one by deleting first and fifth columns
and second row in any order.

Note 1. Note that the subpicture order + and the insiemistic inclusion order ⊆
are two different binary relations on the class of discrete sets.

3.2 Down Sets

In this section we study the closure properties, with respect to the order, of the
various families of polyominoes. The main theorem of the section (Theorem 2)
gives a characterization of L-convex polyominoes in terms of the order +: we
prove that a polyomino is L-convex iff its down-set is contained in P .

134 G. Castiglione and A. Restivo

Fig. 5. Two comparable polyominoes.

Definition 3. Let us consider the ordering (D,+) and S a generic subset of D.
S is a down-set, with respect to +, if it satisfies the following condition:

if S ∈ S and T + S, then T ∈ S.

We denote by Down(S) the down-set of S in (D,+):

Down(S) = {T ∈ D| ∃S ∈ S such that T + S}.

If S = {P} we denote by Down(P) the down-set of S.

For any S ⊆ D we have, in general, that S ⊆ Down(S) and we have that S is a
down-set if Down(S) = S.

Our question is whether the families of polyominoes introduced in Section 2
are down-sets of (D,+).

Proposition 2. C is not a down set of (D,+).

Proof. The proof is given by the example in Fig. 6. Indeed, we have two discrete
sets P and Q such that P is not a polyomino, Q is a convex polyomino and
P + Q. Then Down(C) � P .

This proves that P and C are not down-sets. We have following propositions.

Proposition 3. Down(C) ∩ P = C.

Proposition 4. L is a down-set of (D,+), i.e. Down(L) = L

Proof. We have to prove that any element of Down(L) is an L-convex polyomino.
Let P ∈ Down(L) then there exists an L-convex polyomino Q such that P + Q.
By definition, there are strictly monotone functions r and c such that for all
(i, j), (i, j) ∈ P ⇔ (r(i), c(j)) ∈ Q. Let us observe that, since Q is convex its
row and column are connected then rows and columns of P are connected too.

For any pair P (i, j), P (h, k) of cell in P we have that (r(i), c(j)) ∈ Q and
((r(h), c(k)) ∈ Q. But Q is an L-convex polyomino then, by Lemma 1, we have
that ((r(i), c(k)) ∈ Q or ((r(h), c(j)) ∈ Q. We can conclude that (i, k) ∈ P or
(j, h) ∈ P and, being ith and hth rows of P connected jth and kth columns of P
connected, we have in P an L-path connecting P (i, j) and P (h, k). This proves
that P is a polyomino and is L-convex.

Ordering and Convex Polyominoes 135

Fig. 6. A discrete set comparable with a convex polyomino.

Furthermore, we have a characterization of L-convex polyominoes as stated
in following theorem.

Theorem 2. Let P ∈ D. P is L-convex if and only if Down(P) ⊆ P.

Proof. Let P ∈ D. If P is L-convex polyominoes thesis follows from Proposition
4. Viceversa, since Down(P) ⊆ P P is a polyomino too and it is convex. We
have to prove that P is L-convex. Let (i, j), (h, k) ∈ P , without loss of generality
we can suppose that h > i and k > j. Let Q such that Q + P with r(i) =
i, r(i+1) = h, c(j) = j and c(j+1) = k. Since Q ∈ P we have that (i, j+1) ∈ Q
or (i+ 1, j) ∈ Q then ∀(i, j), (h, k) ∈ P , (i, k) ∈ P or (h, j) ∈ P proving P to be
L-convex polyomino by Lemma 1.

4 Well-Ordering

We call antichain a set of pairwise incomparable elements. An ordering (A,≤)
is well-ordering if for every infinite sequence A1, A2, A3, ... from A there exist
i < j ∈ N such that Ai ≤ Aj .

There exist many equivalent conditions of well-ordering, in particular we have
the following theorem (cf.[9]).

Theorem 3. Let (A,≤) be an ordering. (A,≤) is a well-ordering iff every infi-
nite sequence of elements of A has an infinite ascending subsequence.

A basic theorem in the theory of well-quasi ordering is Higman’s theorem (cf.
[9]), which states, in particular, that subword ordering is a well-ordering in the
set of words. Higman’s theorem has been extended to structures more general
than the words as, for instance, labelled trees (cf. [10]) and infinite words (cf.
[7]). It is worth noting that there exist many papers devoted to applications of
well ordering to formal language theory (cf., for instance,[6] and [5]).

Here we investigate whether there exists some extension of Higman’s theorem
to two dimensions. We consider the following hierarchy of partially ordered sets:

(R,+) ⊆ (L,+) ⊆ (C,+) ⊆ (P ,+) ⊆ (D,+) ⊆ (M,+)

Recall that, if (X,≤) is a well-ordering and Y ⊆ X , then (Y,≤) is a well-ordering
too.

136 G. Castiglione and A. Restivo

Fig. 7. Family of convex polyominoes.

Proposition 5. (C,+), (P ,+), (D,+) and (M,+) are not well-ordering.

Proof. By previous remark, it suffices to prove that (C,≤) is not a well-ordering.

Let {An}n≥6 be the infinite family of symmetric square matrices An, of size
n× n, with entries an(i, j), i, j ≤ n defined as follows

an(i, j) =

⎧⎪⎨⎪⎩
1 i− 1 ≤ j ≤ i + 1
1 (i, j) ∈ {(1, 3), (3, 1), (n− 2, n), (n, n− 2)}
0 otherwise

Fig.7 shows convex polyominoes associated with matrices An. Let n < m and
Am ∈ A. To obtain the polyomino An from Am we should delete m− n rows
and columns from Am. It is easy to observe that by these operations we obtain
a discrete set not belonging to our family. Then each element of {An}n≥6 is
incomparable to each other i.e. {An}n≥6 is an infinite antichain.

Before proving (Theorem 4) that (L,+) is a well-ordering we give some prelim-
inaries.

A binary relation ≤′ on a set A is a quasi-order if it is reflexive and transitive.
A quasi-order is well-founded if any strictly descending chain

A0 ≤′ A1 ≤′ ... ≤′ An ≤′ ...

of elements of A, has a finite length.

Many proofs of well-ordering are based on the following proposition regarding
existence of minimal of antichains in a well-found ordering sets (cf. [11]).

Proposition 6. Let ≤′ be a well-founded quasi-order on A. Let ≤ be a quasi-
order on A which is not a well quasi-order. Then there exists an antichain (with
respect to ≤) which is minimal respect to ≤′.

Let Δ be the set of all antichains in A with respect to a quasi-order ≤
which is not a well quasi-order. Let ≤′ be a well-founded quasi-order on A. An

Ordering and Convex Polyominoes 137

S(P) D(P) P’R(P)

x(P)

y(P)

Fig. 8.

antichain A0, A1, ..., An, ..., with respect to ≤, is said to be minimal, with respect
to ≤′, if A0 is a minimal element, with respect to ≤′, of all first elements of the
antichains in Δ and, for all i > 0, Ai+1 is a minimal element, with respect to
≤′, of all (i + 1)-th elements of the antichains in Δ having, as first i elements,
A0, A1, ..., Ai.

Let us observe that to each L-convex polyomino P , with more than one
maximal rectangle, we can associate a vector (R(P), P ′, S(P), D(P), x(P), y(P))
with R(P) ∈ R, P ′, L(P), R(P) ∈ L, and x(P), y(P) ∈ N, defined as follows (see
Fig. 8):

– R(P) the element of Rmax(P) with maximal height;
– P ′ = P \R(P) with the meaning stated in Section 2.2;
– S(P) is the L-convex polyomino obtained from P by deleting R and columns

after R;
– D(P) is the L-convex polyomino obtained from P by deleting R and columns

before R.
– x(P) the number of rows of the top part of R not included in P ′;
– y(P) the number of rows of the bottom part of R not included in P ′.

Next lemma holds.

Lemma 2. Let P1 and P2 be two L-convex polyominoes, (R1, P
′
1, S1, D1, x1, y1)

and (R2, P
′
2, S2, D2, x2, y2) the vectors, respectively, associated. Then:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

P ′
1 + P ′

2

R1 + R2

S1 + S2 ⇒ P1 + P2

D1 + D2

x1 ≤ x2

y1 ≤ y2

We are now ready to prove the main result of this section.

138 G. Castiglione and A. Restivo

Theorem 4. (L,+) is a well-ordering.

Proof. Let P be an L-convex polyomino, and ρ(P) = |Rmax(P)|, i.e. an integer
value that counts the number of maximal rectangles of P . We define in L a
quasi-order +′ as follows:

P +′ Q⇔ ρ(P) ≤ ρ(Q).

This is a well-founded quasi-order.

Let us suppose, by contradiction, that (L,+) is not a well ordering. By Propo-
sition 6 there exists an antichain

s = P0, P1, P2, · · ·, Pn, · · ·

minimal with respect to +′. For any i ∈ N, we can associate to each Pi the vector
(Ri, P

′
i , Si, Di, xi, yi) so we can write:

Pi = P ′
i ∪R(Pi) and 0 ≤ ρ(P ′

i) < ρ(Pi).

Where by ∪ we mean the overlapping. By reasoning on the lengths of rectangles,
we can observe that R is a well ordering set, with respect to +. We have, by
Theorem 3, that the sequence R(P0), R(P1), R(P2), · · ·, R(Pn), · · · has an infinite
ascending subsequence

R(Pi1) + R(Pi2) + · · · + R(Pin) · ··

with 1 ≤ i1 < i2 < · · · < in < · · ·. The sequence

s′ = P0, P1, · · ·, Pi1−1, P
′
i1 , P

′
i2 , · · ·, P

′
in
, · · ·

is not an antichain, by minimality of s, then s′ has an infinite ascending subse-
quence that we can suppose having first element with index greater or equal to
i1. Then it is

P ′
j1 + P ′

j2 + · · · + P ′
jn
· ··

with i1 ≤ j1 < j2 < · · · < jn < · · ·. Let us consider now the sequence

sS = P0, P1, · · ·, Pj1−1, Sj1 , Sj2 , · · ·, Sjn , · · ·

where Sji = S(Pji) for any i. It is not antichain, by minimality of s, then, as
before, there exists an infinite ascending subsequence

Sk1 + Sk2 + · · · + Skn · ··
of sS with j1 ≤ k1 < k2 < · · · < kn · ··. In the same way, the infinite sequence

P0, P1, · · ·, Pk1−1, Dk1 , Dk2 , · · ·, Dkn , · · ·

where Dki = D(Pki) for any i, has an ascending subsequence

Dh1 + Dh2 + · · · + Dhn · ··

with k1 ≤ h1 < h2 < · · · < hn · ··

Ordering and Convex Polyominoes 139

Furthermore, since N is, trivially, a well-ordering the infinite sequence of integers

sx = xh1 , xh2 , · · ·, xhn , · · ·

where xhi = x(Phi) for any i, has an infinite ascending subsequence

xf1 ≤ xf2 ≤ · · · ≤ xfn · ··

with h1 ≤ f1 < f2 < · · · < fn · ··. Finally, the corresponding infinite sequence of
integers

yf1 , yf2 , · · ·, yfn , · · ·
with yfi = y(Pfi) for any i, has an infinite ascending subsequence

yg1 ≤ yg2 ≤ · · · ≤ ygn · ··

with f1 ≤ g1 < g2 < · · · < gn · ··.

However we choose i ≤ j, Pgi and Pgj are elements of s and, by Lemma 2,
Pgi + Pgj which is a contradiction.

References

1. Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.:Reconstructing convex polyomi-
noes from horizontal and vertical projections. Theoret. Comput. Sci. 155 (1996)
321–347.

2. Bousquet-Mélou, M.: A method for the enumeration of various classes of column-
convex polygons. Discrete Math. 155 (1996) 1–25.

3. Castiglione, G., Restivo, A.: Reconstruction of L-convex Polyominoes. Electronic
Notes in Discrete Math.12, Elsevier Science (2003).

4. Castiglione, G., Frosini, A., Restivo, A., Rinaldi, S.: On L-convex Polyominoes,
submitted to Theoret. Comp. Sci.(2004).

5. D’Alessandro, F., Varricchio, S.: Well quasi-orders on languages. Lecture Notes in
Comp. Sci. 2710 (2003) 230–241.

6. Ehrenfencht, A., Haussler, D., Rozenberg, G.: On regularity of context-free lan-
guages. Theoret. Comput. Sci.27 (1983) 311–332.

7. Finkel, A.: Une Généralisation des théorèmes de Higman et de Simon aux Mots
Infinis. Theoret. Comput. Sci. 38 (1985) 137–142

8. Golomb, S.W.: Polyominoes. Scribner, New York (1965)
9. Higman, G.H.: Ordering by divisibility in abstract algebra. Proc. London Math.

Soc. 2 (1952) 326–336
10. Kruskal, J.B.: Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s conjecture.

Trans. Amer. Math. Soc. 95 (1960) 210–225
11. Kruskal, J.B.: The Theory of Well-Quasi-Ordering: A Frequently Discovered Con-

cept. J. Combin. Theory Ser. A 13 (1972) 297–305
12. Kuba, A., Balogh, E.: Reconstruction of convex 2D discrete sets in polynomial

time, Theoret. Comput. Sci. 283 (2002) 223–242.
13. Lothaire, M.: Combinatorics on Words. Encyclopedia of Mathematics and its Ap-

plications, 17, Addison-Wesley, Reading, MA, (1983)
14. Matz, O.: On piecewise testable, starfree, and recognizable picture lan-

guages.Foundations of Software Science and Computation Structures 1378(1998).

Subshifts Behavior of Cellular Automata.

Topological Properties and Related Languages�

Gianpiero Cattaneo and Alberto Dennunzio

Università degli Studi di Milano–Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione,

Via Bicocca degli Arcimboldi 8, 20126 Milano (Italy)
{cattang, dennunzio}@disco.unimib.it

Abstract. We study the subshift behavior of one dimensional cellular
automata and we show how to associate to any subshift of finite type
a cellular automaton which contains it. The relationships between some
topological properties of subshifts and the behavior of the related lan-
guages are investigated. In particular we focus our attention to the notion
of full transitivity. We characterize the language related to a full transi-
tive subshift extending the notion of irreducibility.

1 Introduction

A one–dimensional cellular automaton (CA) is a bi–infinite array of identical
elements, called cells, located on a straight line and whose position or site is
labelled by an integer number i ∈ Z. Each cell can assume a value chosen from a
finite set A, the alphabet of the CA, and changes its value according to a local
rule f , homogeneously applied to all cells of the automaton, in a discrete time
evolution. Let us recall that a Discrete Time Dynamical System (DTDS) is a
pair 〈X, g〉, where the state space X is a nonempty set equipped with a distance
d and the next state mapping g : X $→ X is continuous on X with respect to
the metric d. A CA can be viewed as a DTDS

〈
AZ, Ff

〉
whose state space is the

set AZ, also called the set of the configurations on alphabet A. The next state
mapping Ff of a CA is the global transition mapping induced by local rule f .

The empirical observation of one dimensional CA leads to realize that they
share a subshift behavior. This means that on a subset Sf of CA configurations
the global transition mapping Ff coincides with the left shift mapping σ. The
DTDS 〈Sf , σ〉 is called the subshift contained in the CA whose local rule is f .

Symbolic dynamics, such as subshifts, has found significant application in
different disciplines, e.g., data storage and transmission, coding and linear al-
gebra [5]. Subshifts are also studied in language theory. Indeed to any subshift
it is associated a formal language. An important class of subshift is constituted
by the subshifts of finite type (SFT), i.e., subshifts which can be described by a
finite set of words and represented by a directed graph.
� This work has been supported by M.I.U.R. COFIN project ”Formal Languages and

Automata: Theory and Application”

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 140–152, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Subshifts Behavior of Cellular Automata 141

Subshifts contained in CA are SFT. In this work, we will show that, given an
SFT, it is possible to construct one or more suitable CA which contain it. We also
study some topological properties of DTDS and apply this investigation in the
case of SFT, focusing our attention to the properties of corresponding language,
graph and matrix. We are interested to the several definitions of “transitivity”
which can be found in literature. In particular, we rename the Devaney notion
given in [4] as positive transitivity and consider the notion of full transitivity,
which, in the case of compact and homeomorphic DTDS, can be found in [3, 6]
with other names.

This paper is organized as follows. In section 2 we give basic definitions and
notions. In section 3 we consider the subshifts contained in CA. In section 4 the
study of subshifts made in [2] is extended to full transitivity. The language, the
matrix, and the graph associated to a full transitive subshift are characterized.
We also study the relationships between sensitivity to the initial condition of
subshifts and associated languages.

2 Basic Definitions

2.1 Cellular Automata, Subshifts and Languages

Definition 1 (One Dimensional CA). A one dimensional bi-infinite CA is a
triple 〈A, r, f〉, where A is the alphabet, r ∈ N is the radius, and f : A2r+1 $→ A
is the local rule, on the basis of which each cell is updated.

The simplest case is the boolean one of elementary cellular automata (ECA)
characterized by r = 1. The different 223

= 256 ECA are classified by the
natural number nf = f(0, 0, 0) · 20 + f(0, 0, 1) · 21 + · · ·+ f(1, 1, 1) · 27.

The set AZ of all configurations of a CA can be equipped with the Tychonoff
metric, dT (x, y) =

∑+∞
i=−∞

1
4|i| δ(xi, yi) where δ is the Hamming distance onA. So

a CA induces a compact, perfect, and complete DTDS
〈
AZ, Ff

〉
where the global

transition mapping Ff : AZ $→ AZ associates with any configuration x ∈ AZ the
next time step configuration Ff (x) whose i-th component is expressed by the
local rule according to: [Ff (x)]i = f(xi−r, . . . , xi, . . . , xi+r). Let us remark that
the global mapping F170 induced by the ECA local rule 170 coincides with the
left shift mapping σ : AZ $→ AZ (∀x ∈ AZ, ∀i ∈ Z, [σ(x)]i = xi+1).

We define the cylinder of block u ∈ An and position m ∈ Z as the set
Cm(u) = {x ∈ AZ | xm · · ·xm+n−1 = u}. Note that cylinders form a basis of
clopen subsets of AZ for the topology induced by the Tychonoff metric.

Definition 2 (Subshift). A (2-sided) subshift over the alphabet A is a DTDS
〈S, σS〉, where S is a non empty closed, strictly σ-invariant (σ(S) = S) subset
of AZ, and σS is the restriction of the shift map σ to S.

In the sequel, in the context of a given subshift 〈S, σS〉, for the sake of simplicity
we will denote by Cm(u) the subset Cm(u) ∩ S, if there is no confusion. Let us
note that in relative topological space (S, dT), where dT is the restriction to S
of the Tychonoff metric defined on AZ, the set Cm(u) ∩ S is open.

142 G. Cattaneo and A. Dennunzio

A subshift 〈S, σS〉 distinguishes the words or finite blocks constructed over the
alphabet A in two types: admissible blocks, i.e., blocks appearing in some con-
figuration of S and blocks which are not admissible, called forbidden, i.e., blocks
which do not appear in any configuration of S. We will write w ≺ x to denote
that the A–word w = (w1, . . . , wn) ∈ A∗ appears in the configuration x ∈ AZ,
formally ∃i ∈ Z s.t. xi = w1, . . . , xi+n−1 = wn (also indicated by x[i,i+n−1] = w).
We will denote by w �≺ x the fact that w does not appear in the configuration x.
A word u = u1 · · ·um ∈ A∗ is a sub-block (or sub-word) of w = w1 · · ·wn ∈ A∗,
written as u . w, iff u = wi · · ·wj , for some 1 ≤ i ≤ j ≤ n. To every subshift we
can associate a formal language according to the following:

Definition 3 (Language of a Subshift). Let 〈S, σS〉 be a subshift over the
alphabet A. The language of S is the collection of all admissible blocks: L(S) =
{w ∈ A∗ : ∃x ∈ S s.t. w ≺ x} .

A canonical way to generate a subshift consists of fixing a collection of words
considered as forbidden blocks. Precisely, let F be any subset of A∗, and let us
construct the set S(F) = {x ∈ AZ : ∀w ∈ F , w �≺ x}. Then S(F) is a subshift,
named the subshift generated by F . Let us note that two different families of
forbidden blocks may generate the same subshift.

Definition 4 (Subshift of Finite Type). A subshift is of finite type iff it can
be generated by a finite set F of forbidden blocks.

In the case of a SFT, the finite set F generally is composed by blocks of different
length. Nevertheless, starting from F it is always possible to construct a set
of forbidden blocks F ′ consisting of the same length and generating the same
subshift. We have just to complete in all possible ways each block from F , up
to reach the length of the longest forbidden block in F . In the case of a SFT
〈S, σs〉 we will denote by Fh a set of forbidden blocks in which all words w ∈ Fh

have the same length h and generating the subshift, i.e. S = S(Fh).
To every SFT we can associate a graph according to the following:

Definition 5 (Graph associated to a SFT). Let 〈S, σS〉 be a SFT generated
by a set Fh of forbidden blocks. The graph Gh(S) associated to S is the pair
〈V (S), E(S)〉 where the vertex set is V (S) = Ah−1 and the edge set E(S) con-
tains all the pairs (a, b) ∈ Ah−1 ×Ah−1 such that a2 = b1, . . . , ah−1 = bh−2 and
a1a2 · · · ah−1bh−1 /∈ Fh. The block a1a2 · · · ah−1bh−1, denoted also by a / b, is
called the word generated by the blocks a and b.

Trivially, bi-infinite paths along nodes on the graph Gh(S) correspond to bi-
infinite strings of the SFT S. In the general case we can minimize the subgraph
Gh(S) removing all the unnecessary nodes and the corresponding outgoing and
incoming edges. In this way the finite paths along nodes on the graph correspond
to the words of the language L(S). From now on, we will consider only minimized
graphs. We will denote by Ah(S) the adjacency matrix of the graph Gh(S)
associated to a SFT 〈S, σS〉 generated by a set Fh of forbidden blocks.

We recall now the following definitions concerning the notion of irreducibility
for a language and a square matrix.

Subshifts Behavior of Cellular Automata 143

Definition 6 (Irreducible Language). A language L ⊆ A∗ is irreducible iff
for every ordered pair of blocks u, v ∈ L there is a block w ∈ L such that uwv ∈ L.

Definition 7 (Irreducible Matrix). An order k square matrix M = [mi,j] is
irreducible iff ∀i, j ∈ {1, . . . , k}, ∃p = p(i, j) ∈ N, p > 0 such that m

(p)
i,j �= 0 ,

where m
(p)
i,j is the (i, j)-component of the matrix Mp.

2.2 Topological Properties of Discrete Time Dynamical Systems

In this section we give the definitions of some topological properties which de-
scribe some behaviors of general DTDS.

Definition 8 (Positive Transitivity). A DTDS 〈X, g〉 is (topologically) pos-
itively transitive iff for any pair A and B of non empty open subsets of X there
exists a natural number n > 0 such that gn(A) ∩B �= ∅.

Intuitively, a positively transitive map g has points which eventually move under
iteration of g from one arbitrarily small neighborhood to any other. As a con-
sequence, the dynamical system cannot be decomposed into two disjoint clopen
sets which are invariant under the iterations of g. On compact DTDS 〈X, g〉 with
g(X) = X , positive transitivity is equivalent to the existence of a dense orbit
and in [6, p. 127] is called one-sided topological transitivity.

We now recall another notion of transitivity which was introduced for home-
omorphic DTDS on compact spaces (see for instance [3, p. 31] where it is simply
called transitivity) and which can be applied to a general DTDS. We rename
this kind of transitivity in order to avoid confusion with the positive one defined
above, also if in this paper it will be used only in the case of homeomorphic
DTDS on compact spaces:

Definition 9 (Full Transitivity). A DTDS 〈X, g〉 is (topologically) full transi-
tive iff for any pair A and B of non empty open subsets of X there exists an inte-
ger number t ∈ Z such that gt(A)∩B �= ∅ (which is equivalent to A∩g−t(B) �= ∅)

It is obvious that homeomorphic DTDS on compact spaces which are positively
transitive are full transitive too. The two following definitions refer to stronger
conditions than positive transitivity.

Definition 10 (Topological Mixing). A DTDS 〈X, g〉 is topologically mixing
iff for any pair A and B of non empty open subsets of X there exists a natural
number n0 such that for every n ≥ n0 we have gn(A) ∩B �= ∅.

Definition 11 (Strong Transitivity). A DTDS 〈X, g〉 is strongly transitive
iff for all nonempty open set A ⊆ X we have

⋃+∞
n=0 g

n(A) = X.

A strongly transitive map g has points which eventually move under iteration of
g from one arbitrarily small neighborhood to any other point. We recall now a
property which is often referred to as an element of regularity of DTDS.

144 G. Cattaneo and A. Dennunzio

Definition 12 (Regularity). A DTDS 〈X, g〉 is regular iff the set of its peri-
odic point Per(g) = {p ∈ X | ∃n ∈ N, n > 0 : gn(p) = p} is dense in X.

The following notion is recognized as a central notion in chaos theory since it
captures the feature that in chaotic systems small errors in experimental readings
might lead to large scale divergence.

Definition 13 (Sensitivity to the Initial Conditions). A DTDS 〈X, g〉 is
sensitive to the initial conditions iff there exists a constant ε > 0 such that for
any state x ∈ X and for any δ > 0 there exists a state y ∈ X and an integer
t0 ∈ N such that d(x, y) < δ and d(gt0(x), gt0(y)) ≥ ε. Constant ε is called the
sensitivity constant of the system.

The popular book by Devaney [4] isolates three components as being the essential
features of chaos: positive transitivity, regularity and sensitivity to the initial
conditions . In [1] it has been shown that if a DTDS with infinite cardinality is
regular and positively transitive, then it is also sensitive to the initial conditions.

3 Subshifts Contained in CA

Now we illustrate a sufficient condition on the local rule of a CA in order that
the global dynamic turns out to be a subshift. For this goal, a suitable set of
forbidden blocks with respect to the local CA rule will be constructed.

Definition 14. Let 〈A, r, f〉 be a CA. A block w = w−r . . . w0 w1 . . . wr ∈ A2r+1

is called left-forbidden with respect to the CA local rule f iff f(w) �= w1.

Proposition 1. [2] Let 〈A, r, f〉 be a CA and
〈
AZ, Ff

〉
be the associated DTDS.

Let F2r+1(f) = {w−r . . . w0 . . . wr ∈ A2r+1 : f(w−r . . . w0 . . . wr) �= w1} be the
set of all left-forbidden blocks of the local rule f and let Sf = {x ∈ AZ : ∀w ∈
F2r+1(f), w �≺ x} be the set of all configurations which do not contain any local
rule left-forbidden block. Then 〈Sf , Ff 〉 is a subshift, called the subshift contained
in the CA.

In order to represent the CA subshifts, we consider the graph G2r+1(Sf) =
〈V (Sf), E(Sf)〉 and we label it by letters of the alphabet A using the local rule
f of the involved CA. Precisely, the label of each edge (x, y) ∈ E(S) is defined as
l(x, y) := f(x1, x2, . . . , x2r, y2r) ∈ A (where (x1, x2, . . . , x2r, y2r) /∈ F2r+1(f)).
This labelled graph will be denoted by AGf . Trivially, bi-infinite paths along
nodes on the graph AGf correspond to bi-infinite strings of the subshift Sf .

Proposition 2. For any SFT 〈S, σS〉 there exists at least a CA 〈A, r, f〉 which
contains it.

Proof. Let Fh be a set of forbidden block generating the SFT 〈S, σS〉. If h is
odd, let r be the positive integer such that h = 2r+1. Let us construct the local
rule f as follows: for any w = w−r . . . w0 . . . wr ∈ Fh, f(w) = b, with b �= w1,

Subshifts Behavior of Cellular Automata 145

and for any w ∈ Ah \ Fh, f(w) = b, with b = w1. We have that F2r+1(f) = Fh

and then S = Sf . If h is even, it is possible to construct a set of forbidden blocks
of odd length h+ 1 generating the same SFT, and one can proceed as described
above.

We want to stress that there could be different CA containing the same SFT.
Indeed, for any forbidden block w, we could set as value of f(w) just w1 (see the
proof) if this choice did not generate bi-infinite paths on the graph AGf which
are not also on the graph Gh(S). Moreover, in the particular case |A| > 2, for
each forbidden block w there are |A| − 2 different choices to set the value of
f(w). As consequence of the previous results we can state that the class of SFT
coincides with the class of SFT contained in CA.

4 Properties of Subshift and Related Languages

In this section we want to study some topological properties of subshifts as
DTDS, characterizing the corresponding languages, and for SFT, the associated
matrixes and graphs too. We start focusing our attention to the notions of posi-
tive and full transitivity. Before studying these properties in the case of subshifts,
we note that they are equivalent notions for homeomorphic CA. This result is
due to the fact that homeomorphic CA are regular, and then each configura-
tion x ∈ AZ is a non-wandering point for the global mapping Ff (i.e., for any
neighborhood U of x there exists an integer n > 0 s.t. F−n

f (U)∩U �= ∅, see [6]).
However we will see that (trivially outside homeomorphic CA) there exist full
transitive subshifts which are not positively transitive.

In [2] three different techniques are explained to investigate if a SFT is pos-
itively transitive. These techniques involve the language, the graph, and the
matrix associated to the SFT.

Theorem 1. [2] Let 〈S, σS〉 be a SFT generated by a set of forbidden blocks Fh.
Then the following statements are equivalent: i) 〈S, σS〉 is positively transitive;
ii) L(S) is irreducible; iii) Gh(S) is strongly connected; iv) Ah(S) is irreducible.
Moreover, if one of the above equivalent conditions holds, then 〈S, σS〉 is regular.
Lastly, if 〈S, σS〉 has infinite cardinality, the previous statements are equivalent
to the following condition: v) 〈S, σS〉 is chaotic according to Devaney.

Let us stress that the equivalence between i) and ii) holds even if the subshift
is not a SFT. In [2] it has been also proved that the class of transitive SFT
contained in ECA is the union of the class of topologically mixing ECA-subshifts
and the class of strongly transitive ECA-subshifts. We now introduce some new
definitions concerning languages, graphs, and matrices which help us to establish
if a subshift is full transitive.

Definition 15 (Weakly irreducible language).
A language L ⊆ A∗ is weakly irreducible iff for any pair of blocks u, v ∈ L there
is a block w ∈ L, s.t. u, v . w.

146 G. Cattaneo and A. Dennunzio

Example 1. A weakly irreducible language which is not irreducible.
Let 〈S, σS〉 be the SFT over the alphabet A = {0, 1} generated by the set of
forbidden blocks F2 = {10}. The language L(S) is weakly irreducible. However

�������	0

��
�� �������	01 ���������	1

�� (
1 1
0 1

)

Fig. 1. Graph and adjacency matrix associated to the SFT of example 1

it is not irreducible. Indeed, if we consider the words u = 1 ∈ L(S) and v = 0 ∈
L(S) we are not able to find any block w ∈ L(S) such that uwv ∈ L(S).

In the sequel we will refer to a connected component of a directed graph G as a
subgraph which is a connected component of the underlying undirected graph of
G obtained suppressing the orientations of all the edges of G. We now introduce
the following:

Definition 16 (Full Transitive Graph). A graph G is full transitive iff either
it is strongly connected or it is bicyclic, i.e., a graph of the kind 〈V,E〉 where the
vertex set is V = {U0, . . . , Um−1 = T0, . . . , Ti, . . . , Tl = W0, . . . ,Wn−1} (m,n, l ∈
N \ {0}) and the edges are the pairs (Ui, U(i+1) mod m), for i = 0, . . . ,m − 1,
the pairs (Ti, Ti+1), for i = 0, . . . , l − 1 and the pairs (Wi,W(i+1) mod n), for
i = 0, . . . , n− 1.

V

V

V

T

T

=T =W

W

W

0

0

1

1

m-1 0

1

l

n-1

Fig. 2. Bicyclic graph: a full transitive graph which is not strongly connected

In other words, a full transitive graph is a unique connected component which
is either strongly connected or it is constituted by two disjoint cycles and by a
unique path which connects them.

Subshifts Behavior of Cellular Automata 147

Definition 17 (Full Transitive Matrix). A square matrix M = [mi,j] is full
transitive iff either it is irreducible or it is bicyclic, i.e., a matrix of the kind

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l1,1 · · · l1,m 0 0 · · · 0 · · · 0
...

. . .
...

...
...

. . .
...

. . .
...

lm,1 · · · lm,m 1 0 · · · 0 · · · 0
0 · · · 0 0 1 · · · 0 · · · 0
...

. . .
...

...
...

. . .
...

. . .
...

0 · · · 0 0 0 · · · 1 · · · 0
0 · · · 0 0 0 · · · r1,1 · · · r1,n

...
. . .

...
...

...
. . .

...
. . .

...
0 · · · 0 0 0 · · · rn,1 · · · rn,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

where L = [li,j] and R = [ri,j] are permutation matrices of order m and n
respectively, which have the element 1 in the positions (m, 1), (i, i + 1) for i =
1, . . . ,m− 1 and (n, 1), (j, j + 1) for j = 1, . . . , n− 1 respectively, or there exist
a permutation matrix P such that P−1MP has the the structure expressed in 1.

Theorem 2. Let 〈S, σS〉 be a subshift. Then the following statements are equiv-
alent: i) 〈S, σS〉 is full transitive; ii) L(S) is weakly irreducible. In the case of
a SFT generated by a set Fh of forbidden blocks, the previous statements are
equivalent to the further conditions: iii) Gh(S) is full transitive; iv) Ah(S) is
full transitive.

Proof. i) ⇒ ii) Chosen arbitrarily u, v ∈ L(S), there exist a configuration
z ∈ C0(u) and an integer t ∈ Z such that σt

S(z) ∈ Cn(v), where n = |u|.
Since σt

S(z) ∈ C−t(u), we have that the words u and v are sub-blocks of the
word w = σt

S(z)[min{−t,n},max{−t+n−1,n+|v|−1}] ∈ L(S).
ii)⇒ i) Chosen arbitrarily u, v ∈ L(S) and m,n ∈ Z, let w ∈ L(S) be the block
such that u, v . w with u = wi · · ·wj and v = wk · · ·wl, for some 1 ≤ i ≤ j ≤ |w|
and some 1 ≤ k ≤ l ≤ |w|. Let us consider a configuration z ∈ Cm−i+1(w), we
have that z ∈ Cm(u) and then σt

S(z) ∈ Cm(v), with t = m− n + k − i ∈ Z.
ii) ⇒ iii) Let us assume that ii) is true in a SFT whose language is not ir-
reducible. Condition that L(S) is weakly irreducible implies for every pair of
strongly connected component (SCC for short) of Gh(S) there must exist a path
which connects them, thus Gh(S) is constituted by a unique connected compo-
nent which is not strongly connected. We now prove that for every pair S1,S2

of distinct SCC of Gh(S) there exist a unique path connecting S1 to S2. Let
π1 = V1, . . . Vm (V1 ∈ S1, V2 ∈ S1) be a simple path connecting S1 to S2, written
as S1 −→π1 S2. For the sequel of argument, let π2 �= π1, with S1 −→π2 S2, be
a simple path having V1 and Vm as first and last vertex, respectively. If u and
v are the words generated by the vertexes of π1 and π2 respectively, then there
exists a block w ∈ L(S) such that u, v . w. This fact means that either S1 and
S2 are subgraphs of the same SCC or π2 is not a simple path or π2 = π1. In all
these cases we obtain a contradiction. We now prove that every SCC of Gh(S)

148 G. Cattaneo and A. Dennunzio

is a cycle. Let us assume that S1 is a non cyclic SCC and let V1 be a vertex
in S1 having (at least) two incoming distinct edges (L1, V1) and (L2, V1). Let
T0, T1, . . . , Tl (Ti /∈ S1 and Ti /∈ S2 for 0 < i < l) be the path connecting S1 to
an other SCC S2 and let π = (V1, . . . , T0) be a path of least length from V1 to
T0. Considering the two paths π1 = L1, πT1 and π2 = L2, π, T1, if u and v are
the words generated by the vertexes of π1 and π2 respectively, since there is a
block w such that u, v . w, either S1 and S2 are subgraph of the same SCC or
L1 = L2 or T1 = T0 or T1 ∈ S1. In all these cases we obtain a contradiction.
Finally we prove that Gh(S) is constituted only by two cyclic SCC S1 and S2.
Let us assume that there exists a cyclic SCC S3. We treat the following case:
S1 −→π1 S2 −→π2 S3. Let us consider two arbitrary vertexes V1 ∈ S1, V3 ∈ S3.
Let π = V1, . . . ,W1, . . . ,Wm, . . . , V3 be the simple path where W1, . . . ,Wm ∈ S2.
Let x = (a∗), with a ∈ L(S), be the configuration obtained as a bi-infinite path
on the vertexes of the cycle S2. Let u = a . . . a ∈ L(S) be the word obtained
repeating the block a in a such way that |u| > |c| where c ∈ L(S) is the block
generated by the vertexes W1, . . . ,Wm. If v is the block generated by the ver-
texes of π, then it is impossible to find a word w ∈ L(S) such that u, v . w. The
other cases can be treated in a similar way.
iii) ⇒ i) Let us consider a SFT whose graph Gh(S) is not strongly connected.
Then there is a configuration z = (a∗bc∗) ∈ S obtained as a bi-infinite path on
Gh(S), for suitable a, b, c ∈ L(S). We have that any word w ∈ L(S) is such that
w ≺ z and any configuration x ∈ S is of the kind σt

S(z) for some t ∈ Z. Let us
choose two arbitrary blocks u, v ∈ L(S) and two arbitrary integers m,n ∈ Z.
Then there exist two configurations x = σt1(z) ∈ Cm(u) and y = σt2

S (z) ∈ Cn(u),
for some t1, t2 ∈ Z. Thus we obtain σt2−t1

S (x) = y ∈ Cn(u).
iii)⇔ iv) It directly follows from the structure of Gh(S) and Ah(S).

Example 2. A full transitive subshift which is not positively transitive.
Let us consider the subshift of the example 1. Since the graph is not strongly
connected the subshift is not positively transitive. However it is full transitive.

It is easy to prove that a SFT generated by a set Fh of forbidden blocks
is regular iff every connected component of the graph Gh(S) is a SCC (see [5,
p. 213]). This fact implies that a full but non positively transitive SFT is not
regular. We now illustrate some conditions under which a subshift is sensitive to
the initial conditions. For this goal, let us introduce a suitable notion of language.

Definition 18 (Right (resp., Left) 2-ways Extendible Language). A lan-
guage L ⊆ A∗ is right (resp., left) 2-ways extendible iff for any block u ∈ L there
exist two words w,w′ ∈ L, with w �= w′ and |w| = |w′|, such that uw, uw′ ∈ L
(resp., wu,w′u ∈ L).

Definition 19 (Right (resp., Left) 2-ways Extendible Path). A path π =
V1, . . . , Vm (m > 1) on a graph G is right (resp., left) 2-ways extendible iff there
exists two paths π′ = V1, . . . , Vm, R′

1, . . . , R
′
n and π′′ = V1, . . . , Vm, R′′

1 , . . . , R
′′
n

Subshifts Behavior of Cellular Automata 149

(n ≥ 1) (resp., π′
1 = L′

1, . . . , L
′
n, V1, . . . , Vm and π′′

1 = L′′
1 , . . . , L

′′
n, V1, . . . , Vm)

such that R′
i �= R′′

i for some i (resp., L′
i �= L′′

i for some i).

We recall that a sensitive DTDS must be perfect (that is, without isolated
points), and as regards to perfectness of subshift, we give the following result
whose proof is similar to the one of Theorem 3:

Proposition 3. A subshift is perfect iff its language is either left or right 2-ways
extendible. Moreover a SFT generated by a set Fh of forbidden blocks is perfect
iff every path on the graph Gh(S) is either left or right 2-ways extendible.

Theorem 3. Let 〈S, σS〉 be a subshift. Then the following statements are equiv-
alent: i) 〈S, σS〉 is sensitive to the initial conditions with sensitivity constant
ε = 1; ii) L(S) is right 2-ways extendible. Moreover, in the case of a SFT gener-
ated by a set Fh of forbidden blocks, the previous statements are equivalent to the
following condition: iii) every path on the graph Gh(S) right 2-ways extendible.

Proof. i) ⇒ ii) Chosen an arbitrary block u ∈ L(S) with |u| = n, let us
consider a configuration x ∈ C1(u). Then there must exist a configuration
y ∈ C−n(x[−n,n]) and an integer t ∈ N such that dT (σt

S(x), σt
S(y)) ≥ 1. This

fact implies that xt �= yt (necessarily we have t > n). Introducing the distinct
words w′ = x[n+1,t] and w′′ = y

[n+1,t]
, we obtain that uw, uw′ ∈ L(S).

ii) ⇒ i) For any configuration x ∈ S and any integer n ∈ N, there exist two
distinct blocks w′ ∈ L(S) and w′′ ∈ L(S) such that x[−n,n]w

′, x[−n,n]w
′′ ∈ L(S).

Thus there is a configuration y ∈ C−n(x[−n,n]), with yi �= xi for some i > n.
ii) ⇒ iii) Let us consider a SFT. Let π = V1, . . . , Vm be a path on the graph
Gh(S) and let u ∈ L(S) be the block generated by the words corresponding
to the vertexes of π. Then there exist two distinct words w′, w′′ ∈ L(S), with
|w′| = |w′′|, such that uw′, uw′′ ∈ L(S). This fact implies that the two paths
π′ = V1, . . . , Vm, R′

1, . . . , R
′
n and π′′ = V1, . . . , Vm, R′′

1 , . . . , R
′′
n generating the

words uw′ and uw′′ respectively, are such that R′
i �= R′′

i for some i.
iii) ⇒ i) Chosen an arbitrary configuration x ∈ S and an integer m ∈ N such
that 2m + 1 ≥ h, let us consider the path π on the graph Gh(S) generating the
word u = x[−m,m], and the paths π′ and π′′ given by condition iii). Then there
exists a configuration y ∈ C−m(u) such that yi �= xi for some i > m.

In other words a SFT is perfect iff every finite path on the corresponding graph
is extendible in at least two different ways either at the first or at the last vertex.
It is sensitive to the initial conditions iff this fact holds at the last vertex of every
path. As a consequence of Theorems 2 and 3, we can state that a full but non
positively transitive SFT is not sensitive to the initial conditions.

Example 3. A non perfect subshift.
Let us consider the subshift of the example 1. It is not perfect since the path
(0)(1) is not extendible in two different ways.

150 G. Cattaneo and A. Dennunzio

�������	01

1 ��

0
��

�������	00
1

��

0

��

�������	11

1

		

0

�������	10

1

��

⎛⎜⎜⎝
1 1 0 0
0 0 1 1
1 1 0 0
0 0 0 1

⎞⎟⎟⎠

Fig. 3. Graph AG186 and corresponding adjacency matrix

Example 4. A sensitive subshift.
Let 〈S186, σS〉 be the SFT contained in the ECA 186. Every finite path on the
graph AG186 is right 2-ways extendible. Thus S186 is sensitive to the initial
condition (and also perfect). Let us note that this SFT is not full transitive.

Example 5. A perfect subshift which is not sensitive to the initial condition.
Let 〈S234, σS〉 be the SFT contained in the ECA 234. Every finite path on the
graph AG234 is left 2-ways extendible but the path (01)(11) is not right 2-ways
extendible. Then this SFT is perfect but not sensitive to the initial conditions.

�������	01

1 ��

0
��

�������	00
1

��

0

��

�������	11

1

		

�������	10
1

��

0
�� ⎛⎜⎜⎝

1 1 0 0
0 0 1 1
1 1 0 0
0 0 0 1

⎞⎟⎟⎠

Fig. 4. Graph AG234 and corresponding adjacency matrix

5 Conclusion

Given a SFT, we have shown that there exists at least one CA which contain
it, and then the class of the SFT turns out to coincide with the class of SFT

Subshifts Behavior of Cellular Automata 151

Table 1. Classification of all ECA rules as left subshift.

Non Full Transitive Subshifts

40,48,56,58,60,112,120,130,136,144,146,148,150,152
156,160,162,163,168,172,176,178,180,182,188,186,190,192,194,195

196,198,200,202,204,208,210,212,214 216,220,224,225,226
227,228,230,232,234,235,236,240,241,242,243,244,246 248,250,252

Full Transitive and Non Positively Transitive Subshifts

32,44,50,62,96, 104,114,122,128,131,132,134
140,154,158,161, 164,166,177,179,

203,206,218,222,233, 238,249,251,254

Infinite Mixing Subshifts

2,10,11,14,34,35,38,41,42,43, 46,47,57,59,66,74,98,99,106,107
138,139,142,143,155,169,170, 171,173,174,175,185,187,189,191

Strongly Transitive Strongly Transitive and Mixing Subshifts
Subshifts (Trivial Subshifts)

3,15,33,45,49,51,61,63,67,75 0,4,6,8,12,16,18,20,22,24
97,105,113,115,121,123 26,28,30,36,52,54,64,68,70,72

76,78,80,82,84,86,88,90,92,94
100,102,108,110,116,118,124,126,129

133,135,137,141,145,147,149,151,153,157
159,165,167,181,183,193,197,199,201,205
207,209,211,213,215,217,219,221,223,229

231,237,239,245,247,253,255

Non Regular Subshifts

32,35,40,44,50,58,62,96,104,105,114,122,128,130,131, 132,134,136,140,143,154
158,160,161,162,163,164,166,168,172,176,177,178, 179,186,190,202,203,206,218

,222,224,232,233,234,235, 238,242,243,248,249,250,251,254

Sensitive and Non Mixing Subshifts

58,130,162,163,186

Perfect and Non Mixing Subshifts

40,58,130,162,163,168,172,186,202,234,235

No Subshifts

1,5,7,9,13,17,19,21,23,25,27,29,31,37,39,53,55,65
69,71,73,77,79,81,83,85,87,89,91,93,95,101,103, 109,111,117,119,125,127

contained in CA. We characterized the languages associated to full transitive and
sensitive subshifts. In the case of SFT, we also gave the conditions on the graph in
order that the SFT exhibit these properties. The class of full but non positively
transitive dynamics of subshfts (contrarily to the ones of homeomorphic CA)
turns out not to be empty. Table 1 reports all the 256 ECA classified as left
subshifts with respect to the full transitivity, positive transitivity, topological
mixing, strongly transitivity, perfectness, sensitivity to the initial condition, and
regularity. Trivially the right case can be treated in a similar way.

152 G. Cattaneo and A. Dennunzio

References

[1] J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, On Devaney’s definition
of chaos, American Mathematical Montly 99 (1992), 332–334.

[2] G. Cattaneo, A. Dennunzio, and L. Margara, Chaotic subshifts and related lan-
guages applications to one-dimensional cellular automata, Fundamenta Informati-
cae 52 (2002), 39–80.

[3] M. Denker, C. Grillenberger, and K. Sigmund, Ergodic theory on compact spaces,
Lecture Notes in Mathematics, vol. 527, Springer-Verlag, 1976.

[4] R. L. Devaney, An introduction to chaotic dynamical systems, second ed., Addison-
Wesley, 1989.

[5] D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cam-
bidge University Press, 1995.

[6] P. Walters, An introduction to ergodic theory, Springer, Berlin, 1982.

Evolution and Observation: A Non-standard

Way to Accept Formal Languages�

Matteo Cavaliere1 and Peter Leupold2

1 Department of Computer Science and Artificial Intelligence
University of Sevilla,

Sevilla, Spain
martew@inwind.it

2 Research Group in Mathematical Linguistics
Rovira i Virgili University

Tarragona, Spain
klauspeter.leupold@estudiants.urv.es

Abstract. It is a very common procedure in biology to observe the
progress of an experiment and regard the result of this observation as
the final outcome. Inspired by this, a new approach for generating formal
languages, called evolution/observation, has been introduced [6]. In the
current work we consider evolution/observation as a new strategy also
for accepting languages: a word is accepted, if the (observed) evolution
of a certain system starting from this input follows a regular pattern.
We obtain the following result: checking if the (observed) evolution of a
context-free system follows a regular pattern is enough to accept every
recursively enumerable languages. On the other hand, if we observe the
evolution of systems using very simple rules (of the kind a → b), then it
is possible to accept exactly the class of context-sensitive languages.

Keywords: Evolution, Observation, Languages, Universality.

1 Introduction: Using Evolution/Observation to Accept
Languages

In earlier work of the current authors, a new approach for generating languages,
called evolution/observation was introduced [5]; the idea comes from the fact
that often, in biology and chemistry, the result (i.e. the output) of a certain
experiment is the observation of the entire progress of the experiment.

In the mentioned work, it has been shown how a language-generating device
can be constructed using two less powerful systems: a mathematical model of a
biological system that “lives” (evolves), and an observer that watches the entire
evolution of the biological system and translates it into a readable output. Thus
� This work was done, while both authors were funded by the Spanish Ministry of

Culture, Education and Sport under the Programa Nacional de Formación de Pro-
fesorado Universitario (FPU).

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 153–163, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

154 M. Cavaliere and P. Leupold

the main idea of this approach is that the computation is made by observing the
entire “life” of a biological system.

This architecture has already been applied in different frameworks. In a first
article [5] the evolution of a membrane system (a formal model inspired by the
functioning of the living cells) was observed. There it was shown that a system
composed of a membrane system with only context-free power and a finite state
automaton in the role of the observer is computationally universal. This can be
considered a first hint towards the fact that such an approach is powerful.

In subsequent work [4], a finite automaton observed the evolution of “marked”
strings of a splicing system (a formal system inspired by the recombination of
DNA strands that happens under the action of restriction enzymes). Also in this
case, the observation adds much power to the considered bio-system. In particu-
lar, it has been shown that just observing the evolution of “marked” strings in a
splicing system (using finite axioms and rules) it is even possible to generate all
the context-free languages; the generative power of this class of splicing systems,
considered in the standard way, is subregular.

In another approach [1], the evolution/observation strategy has been applied
to sticker systems (a formal model inspired by the ligation and annealing opera-
tion largely used in the DNA computing area). As now somehow expected, also
in this case just observing the evolution of the double strand DNA molecules
obtained using the simple regular sticker operation, it is possible to generate
non-recursive languages; the classical generative power of simple regular sticker
systems is subregular.

Finally, the evolution/observation framework has also been used, in a more
general way, for generating formal languages: the “evolution” of a grammar was
observed using a finite automaton. In this case, universality is obtained using
a finite state automaton observing a context-free grammar [6]. Also some non-
universal variants have been presented.

In distinction to all the previous works, where the strategy of evolution/
observation has been used to construct devices generating languages, here we
want to use this strategy to construct a device that accepts languages. This will
be called a recognizing E-system/observer.

Such a recognizer E-system/observer is composed of three components: an
evolving system, in short E-system, an observer and a decider. Figure 1 schemat-
ically illustrates the manner in which these three components interact to form a
system.

When a word w is given as input to a recognizer E-system/observer, then
the E-system starts to modify this word according to its rules. In this way it
generates a sequence of intermediate words. The E-system stops, when the last
word obtained cannot be rewritten any more. The entire sequence is regarded
as the behavior of the E-system when it receives as input the original word
w. The observer, following a set of specific rules, associates a label to each
intermadiate word of this behavior. It writes these labels onto an output tape in
their chronological order, and in this way a word w′ is obtained, which describes
the behavior observed.

Evolution and Observation 155

Fig. 1. The architecture of a recognizing E-system/observer.

Then the original word w is accepted, if and only if w′ is in the regular
language accepted by the decider. In other words, the word w is accepted, if and
only if the observed behavior of the E-system with w as input has followed a
certain regular pattern.

Coming back to the original motivation of a recognizing E-system/ observer
we can imagine using a biological system as a recognizing device: just taking
the biological system, “introducing” an input to such a system and observing
its evolution. If the evolution of the biological system is the one expected (for
example follows a regular pattern) then the word is accepted by the system,
otherwise it can be considered rejected. The observer is fundamental in extract-
ing a more abstract formal behavior from the evolution of the biological system,
somewhat like a protocol of the evolution. The decider checks that the behavior
of the biological system was the one expected.

The E-system used can be any system where some kind of behavior can be
formalized: a rewriting system or the mathematical model of some biological
system like membrane, splicing, sticker systems, etc.

We want to stress the main difference with classical accepting devices and
with grammars used as accepting devices as introduced by Bordihn et al. [3]:
in our case the acceptance of a word is decided analyzing the entire life of the
considered E-system.

Further we have to remark some similarities of our approach with the idea of
iterated gsm. Also there, a initial word is rewritten and in this way a language

156 M. Cavaliere and P. Leupold

is generated. However, in every step one word is generated, see for instance [9],
[10], whereas here the entire iteration accepts only one single word. Except for
the way of defining the language, our device can be seen like a case of an iterated
(accepting) gsm, with a regularly controlled sequence of transductions. A similar
kind of device has been studied by Asveld [2].

Another somewhat comparable mechanism is given by Ilie and Salomaa [8]
in a characterization of recursively enumerable languages. There two systems of
rules –just like the ones used below– alternate according to a regular control
mechanism, and this way computational universality is achieved.

In what follows we suppose the reader familiar with the basics of formal lan-
guages. In general, for all notions from formal language theory we refer to stan-
dard textbooks (e.g. [11] and [12]). By CF , CS, and RE we denote the classes of
languages generated by context-free, context-sensitive, and unrestricted gram-
mars respectively.

2 Recognizing G-system/Observer: Definition

In this section we define formally a recognizing G-system/observer as a partic-
ular instance of the general E-system/Observer architecture presented in the
introduction. We start out by providing separately the definitions of the three
components that are then used to form a recognizing G-system/observer.

2.1 G-systems

As underlying E-system effecting the rewriting (evolution) of the input string, we
will consider a simplification of generative grammars. There is no start symbol,
and like in pure grammars there is no distinction made between terminals and
non-terminals. Thus such a G-system is a pair Γ = (V, P), where V is a finite
alphabet, and P is a finite set of rewriting rules over V .

The system Γ rewrites an input word w ∈ V ∗ in exactly the same way
as a grammar during a derivation. As such a derivation is in general non-
deterministic, also the G-system Γ can produce many different sequences of
intermediate strings (the equivalent of sentential forms for grammars); such se-
quences have the form 〈w1, w2, . . . , wn, . . . 〉 for words wi ∈ V ∗ and w1 = w. The
set of all such sequences for which a system Γ on a word w finally stops – i.e.
no more rule can be applied – is denoted by Γ (w).

If all the rules in P are context-free, then Γ is called a CF G-system. The
class of all such systems will be shortly denoted by CFGS . We also consider
a more restricted case of G-systems having only rules of the kind a → b, for
a, b ∈ V . It is interesting to observe that these rules are not only regular, but
even changing only one letter into another one. Thus the length of the string
rewritten by the G-system is constant, and in some sense the system is just
modifying it to investigate its structure. Because one might also see this as just
repainting the letters in different colors, we will call such set of rules a painter
and denote the class of all G-systems using only painters by PA.

Evolution and Observation 157

2.2 Observer

For the observer as described in the introduction, however, we need a device map-
ping arbitrarily long strings into just one singular symbol. As in earlier work [6]
we use a special variant of finite automata with some feature known from Moore
machines: the set of states is labelled with the symbols of an output alphabet
Σ. Any computation of the automaton produces as output the label of the state
it halts in (we are not interested in accepting / not accepting computations and
therefore also not interested in the presence of final states); because the obser-
vation of a certain string should always lead to a fixed result, we consider here
only deterministic and complete automata.

Formalizing this, a monadic transducer3 is a tuple O = (Z, V,Σ, z0, δ, σ) with
state set Z, input alphabet V , initial state z0 ∈ Z, and a complete transition
function δ as known from conventional finite automata; further there is the
output alphabet Σ and a labelling function σ : Z $→ Σ. The output of the
monadic transducer is the label of the state it stops in. For a string w ∈ V ∗ and
a transducer O we then write O(w) for this output; for a sequence 〈w1, . . . , wn〉
of n ≥ 1 strings over V ∗ we write O(w1, . . . , wn) for the string O(w1) · · ·O(wn).
The class of all (deterministic) monadic transducers will be denoted by MT .
For simplicity, in what follows, we present only the mappings that the observers
define, without giving detailed implementations for them.

2.3 Decider

As deciders we require devices accepting a certain language over the output
alphabet Σ of the corresponding observer as just introduced. For this we do not
need any new type of device but can rely on conventional finite automata with
input alphabet Σ. The output of the decider, for a word w ∈ Σ∗ in input, is
denoted by D(w). It consists in a simple yes or no. The class of all deciders will
be denoted by FA, like for standard finite state automata.

2.4 Recognizing G-system/Observer

Putting together the components just defined in the way informally described in
the introduction, a recognizing G-system/observer (in short RGO) is a quadruple
Ω = (Δ,Γ,O,D); here Δ is the finite input alphabet, Γ = (V, P) is a G-system
where Δ ⊆ V , O is an observer (Z, V,Σ, z0, δ, σ), and D is a decider with input
alphabet Σ.

The language accepted by such a system is the set of all words w ∈ Δ∗ such
that there exists a sequence s ∈ Γ (w) such that D(O(s)) = yes; formally

L(Ω) := {w : ∃s ∈ Γ (w)[D(O(s)) = yes]}.
3 In earlier work these devices were called finite automata with singular output. We

introduce here this new name inspired by monadic rewriting systems, because it
seems much less awkward.

158 M. Cavaliere and P. Leupold

For a class G of G-systems, O of observers and D of deciders, we denote by
RGO(G,O,D) the class of all languages accepted by RGOs using components
from the respective classes.

3 The Power of RGOs Using Painters

In this section we study the accepting power of RGOs using restricted G-systems
having only painter rules. We prove that this type of RGO is able to accept
exactly the class of context-sensitive languages. Initially, we illustrate the manner
in which a RGO works by giving an example. It shows how the combination
evolution/observation of very simple components can be used to accept more
complicated languages.

Example 3.1 The non context-free language L′ = {anbncn : n ∈ IN} can be
accepted by an RGO Ω = (Δ,Γ,O,D), with the following components:
the input alphabet Δ is {a, b, c};
the G-system Γ = (V, P) has alphabet
V = {a, b, c, a′, a′′, b′, b′′, c′, c′′} and the set P of rules (painters) is

{a→ a′, a′ → a′′, b→ b′, b′ → b′′, c→ c′, c′ → c′′};

the observer O, with input alphabet V and output alphabet
Σ = {a1, a2, a3, a4, a5, a6,⊥}, realizes the following mapping:

O(w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 if w ∈ a′′∗a′a∗b′′∗b∗c′′∗c+,
a2 if w ∈ a′′∗a′a∗b′′∗b′b∗c′′∗c∗,
a3 if w ∈ a′′∗a′a∗b′′∗b′b∗c′′∗c′c∗,
a4 if w ∈ a′′∗a∗b′′∗b′b∗c′′∗c′c∗,
a5 if w ∈ a′′∗a∗b′′∗b∗c′′∗c′c∗,
a6 if w ∈ a′′∗a∗b′′∗b∗c′′∗c∗,
⊥ else.

The decider D is a finite state automaton, with input alphabet Σ, that gives a
positive answer exactly if a word belongs to the regular language

a6(a1a2a3a4a5a6)∗;

note that in this way any production of the symbol ⊥ leads to immediate rejec-
tion of the word.

What are now the input words w over V ∗, for which there exists at least one
sequence s in Γ (w) such that O(s) belongs to the regular language accepted by
the decider D? We start by considering w = λ; obviously Γ (w) contains only the
sequence < λ >. Because we have O(< λ >) = a6, then O(< λ >) is accepted
by the decider and therefore the empty word is accepted by the entire system Ω.

Consider next a non-empty word w; first, we notice that such a word must
belong to a+b+c+, otherwise there will be no sequence s in Γ (w) such that
O(Γ (w)) = w′ and w′ starts with the necessary a6.

Evolution and Observation 159

If this is true, then always the six stages corresponding to a1 to a6 can be
traversed. Every time exactly one of each of the letters a, b, c in w is transformed,
using the rules in P , to its doubly primed version. If we arrive, in this manner,
at some word from a′′+b′′+c′′+, then we have obtained a sequence s ∈ Γ (w) of
intermediate strings such that O(s) is accepted by the decider and then the word
w is accepted by Ω; the regular expression checked by the decider guarantees
that the word w was of the form a+b+c+ and had exactly the same number of
as, bs and cs.

In fact, for any word w that does not respect this structure, the sequences in
Γ (w) will correspond to strings different from the one accepted by the decider;
for example if in w there are more bs than as and cs then every sequence s
in Γ (w) will be such that O(s) contains more a2s than a1s and a3s, and thus
rejected by the decider. Therefore the language accepted by Ω is exactly the
language L′.

We now try to determine the exact power of this type of RGO. It will turn
out to be equal to that of Linear Bounded Automata; as these are defined in
terms of complexity theory, we will use several notions from that field without
introducing them in detail. For a language L to be in NSPACE − TIME(f, g)
means that there exists a non-deterministic Turing Machine accepting L and
not using more than f(n) tape-cells in g(n) steps to accept a word of length n.
For details about these and all other notions concerning complexity we refer the
reader to the monograph of Wagner and Wechsung [13]. To denote anonymous
functions we use the notation of the lambda-calculus; thus, for example, λn.n2

is the square function with argument n. By id we denote the identity function
λn.n.

We now show that for the work space there is a very tight and obviously
optimal bound telling us that RGO(PA,MT ,FA) ⊆ CS.

Proposition 3.2 Any language L from the class RGO(PA,MT ,FA) lies in the
class NSPACE − TIME(id, λn.n · cn), where c is the size of the corresponding
G-system’s alphabet.

Proof. With a non-deterministic Turing machine with one tape we simulate a
RGO using a G-system Γ ∈ PA, observer Ob ∈ MT and decider D ∈ FA, in
the following way: the actions of Γ are simulated by rewriting symbols only on
the positions of the tape originally occupied by the input word. This takes at
most n− 1 steps to reach the (randomly chosen) position in question. Then Ob
is simulated in the machine’s finite control; nothing is written on the tape, in
the worst case we need n− 1 steps to reach the first position of the word, then
n steps to simulate Ob.

Now Ob’s single-letter output is not written on the tape – rather in the
control we remember D’s last state and change it according to the letter Ob
would output. In this way none of the output need ever be stored, because it is
generated from left to right, just the way D reads it – therefore the reading can
be simulated “on-line” rather than doing it after everything else is finished. All

160 M. Cavaliere and P. Leupold

the phases of this process take a number of steps linear in n, and further we can
already see that the proposition’s space bound holds.

For the time bound we need some more considerations. Let c be the size
of Γ ’s alphabet. As the length of the input word is constant, from a word of
length n at most cn different words can be reached via a painter’s rules. Further,
looking at the simulation of a step of the original system at the point where the
Turing Machine’s head is on the tape’s first position ready to simulate Ob, this
type of configuration is recurring for every step, because the position of the head
is determined, and in the control only the last state of D need be stored. So if
D has k states, the number of distinct configurations of this type is k · cn. Any
computation simulating more steps of the RGO contains a cycle and therefore
has the same result as a shorter one (if it terminates).

Since, as already stated above, the number of Turing machine steps to simu-
late one RGO step is linear in n, the overall shortest accepting computation (if
it exists) accepting a word of length n has a time bound in the order of λn.n ·cn.

��

The time bound we obtain from this simulation is not optimal. With the fol-
lowing theorem and the space bound from Proposition 3.2 we can see that
RGO(PA,MT ,FA) ⊆ NSPACE − TIME(id, λn.2n) must hold. It should
be noted that in the cited theorem a somewhat different version of Turing Ma-
chines is used (off-line there vs. on-line here); in our case, however, the result
carries over to the type of machine described in the proof of Proposition 3.2.

Theorem 3.3 (see e.g. [13]) Let s ≥ log be a space-constructible function; then
NSPACE(s) ⊆ NSPACE − TIME(s, 2s) ⊆ NTIME(2s).

Now we give a lower bound for RGO(PA,MT ,FA)’s space complexity by
showing that any language accepted by a Linear Bounded Automaton is in this
class.

Proposition 3.4 NSPACE(id) ⊆ RGO(PA,MT ,FA).

Proof. We construct for any LBA M an equivalent system Ω with a G-system
from PA, an observer fromMT , and a decider from FA. The LBAs are normed
in the following manner: the input word’s left border is signified by a #, the right
border by a $; from these symbols no transition moves to the left, respectively to
the right. The set of transitions δ is composed of elements of the form Q×A→
Q×A× {+,−}, where Q is the set of states, A the tape alphabet, and + or −
denotes a move to the right or left respectively. An input word is accepted, if
the LBA stops in a final state.

Finally, we take as input to Ω not words w, but their bordered version #w$;
this makes simulation a little easier, but does not restrict generality: one may
as well code # and w’s first letter into one letter and replace this first letter
by the new one before anything else is done; then by standard techniques from
complexity theory we simulate the machine’s action on both positions in the
single one. On the right border the same is true. This, however, would make Ω
much more complicated.

Evolution and Observation 161

Now we build up a RGO Ω = (A,Γ,O,D) simulating M . Here Γ = (V, P)
where the alphabet V = A ∪ {#, $} ∪ (A × Q) ∪ T . All transitions in δ have
associated an unique label t, and T is the set of all these labels. A letter from
the set A×Q shall indicate that M ’s head is in the indicated position and the
current state is the component from Q. To facilitate any potential configurations
the rule set P contains all possible rules of the form x → y, where x ∈ A and
y ∈ {x} ×Q.

Further, for all transitions t : (q1, x)→ (q2, y, μ) the rules (x, q1)→ t and t→
y are added to P . We give now an example of how such transition’s simulation
works for μ = +; letters from A × Q with two components are depicted in the
way component1

component2 , a letter a from A by a
− :

x

q1

z (x,q1)→t
=⇒ t z z→(z,q2)

=⇒ t z

q2

t→y
=⇒ y z

q2

The rest of the word should consist exclusively of letters from A. For the sim-
ulation of each transition t : (q1, x) → (q2, y,+), the mapping realized by the
observer with output alphabet {a, b, c, d, e} is the following:

O(w) =

⎧⎨⎩
a if w ∈ #A∗(x, q1)A∗$ ∪ (#, q1)A∗$,
b if w ∈ #A∗tA∗$ ∪ tA∗$,
c or d if w ∈ #A∗t(y, q2)A∗$ ∪ t(y, q2)A∗$ ∪#A∗t($, q2) ∪ t($, q2).

The configuration with y z
q2

is again of the first type. The latter parts of all
expressions are necessary only for the special cases, where the head touches one
of the borders. Transitions moving to the left (μ = −) are treated analogously.
In the last clause, c is output if q2 is an accepting state, d otherwise. The initial
configuration #w$ is mapped to a. In all configurations not mentioned here, the
output is e.

The final component of Ω, the decider, accepts the language

a(ab(c ∨ d))∗abc.

It should be noted that, due to the uniqueness of each transition t, the clauses
for b and c/d are unique for each one, too; therefore there is no ambiguity in the
observer. As the symbol t is produced only by an appropriate letter/state com-
bination (x, q1), every sequence abc or abd produced by the observer corresponds
to the correct simulation of the transition t. On the other hand, such sequences
cannot be produced in any other way. Thus the language accepted is exactly the
one accepted by the original M . ��

Summarizing Propositions 3.2 and 3.4 we now see that actually the class
RGO(PA,MT ,FA) is equal to a well-known language class, as NSPACE(id)
is exactly the class of context-sensitive languages.

Theorem 3.5 RGO(PA,MT ,FA) = CS.

162 M. Cavaliere and P. Leupold

4 The Power of RGOs Using Context-Free Rules

Considering RGOs with regular G-system does not make sense here: as the rules
do not distinguish between terminals and non-terminals, there is no difference
between context-free and regular rules. Therefore we proceed directly to the
investigation of CF G-systems. Here we already reach the maximal possible
power, because all recursively enumerable languages can be accepted.

Theorem 4.1 RGO(CFGS ,MT ,FA) = RE.

Proof (Sketch). We sketch, for any given Turing Machine M , the construction
of an equivalent RGO Ω. This is done completely analogously to the proof of
Proposition 3.4. We only need to provide the work tape with an unbounded
amount of space potentially used by M in contrast to an LBA. This is done by
adding to the G-system of Ω a special letter �, and the context-free rules x→ x′,
x′ → �x′ x′ → x′�, and x′ → x for all letters x from M ’s input alphabet. These
can expand the tape to both sides of the input word.

This way any amount of work space can be produced before starting the simu-
lation of a computation. The priming of the letter ensures that –with appropriate
design of the observer– space is generated only before the computation’s simu-
lation. In general, later generation would not be a problem, only in cases where
the machine’s head is on a blank symbol and more space is introduced between
the head and the non-empty part of the tape. ��

5 Outlook

Interesting problems have been left open: the RGOs considered accept languages
in a highly non-deterministic manner that makes the recognizing systems not
useful from a practical point of view; this raises the question of how to decrease
the non-determinism. One option is to consider a type of RGOs, confluent in the
sense that for a word w all possible computations result in the same answer.

Finally, as already mentioned in the introduction, it seems especially inter-
esting for the possible practical relevance, to consider RGOs where the G-system
used is the mathematical model of some biological system. For instance, in the
DNA area, there has been introduced a lab-technique called FRET [7], used to
observe, in real-time, the dynamic of DNA strands. This technique might be
used to implement for a DNA computation the type of observer introduced in
our framework.

References

1. A. Alhazov and M. Cavaliere: Computing by Observing Bio-Systems: the Case
of Sticker Systems, Pre-Proceedings of DNA 10 - Tenth International Meeting on
DNA Computing, Milano, 2004.

2. P. R. J. Asveld, On controlled iterated gsm mappings and related operations,
Preprint Math. Centrum, Amsterdam, 1979, Rev. Roum. Math. Pures.

Evolution and Observation 163

3. H. Bordihn, H. Fernau and M. Holzer: Accepting Pure Grammars and Systems.
Technical Report 1, Fakultät für Informatik, Universität Magdeburg, 1999.

4. M. Cavaliere and N. Jonoska: (Computing by) Observing Splicing Systems.
Manuscript 2004.

5. M. Cavaliere and P. Leupold: Evolution and Observation – A New Way to Look
at Membrane Systems. In: C. Mart́ın-Vide, G. Mauri, Gh. Păun, G. Rozenberg,
A. Salomaa (eds.): Membrane Computing, Lecture Notes in Computer Science
2933, Springer, 2004, 70–88.

6. M. Cavaliere and P. Leupold: Evolution and Observation — A Non-Standard
Way to Generate Formal Languages. Theoretical Computer Science 321, 2004,
pp. 233-248.

7. T. Ha, Single-Molecule Fluorescence Resonance Energy Transfer, Methods, 25,
2001, 78–86.

8. L. Ilie and A. Salomaa: 2-Testability and Relabelings Produce Everything. Journal
of Computer and System Sciences 56(3), 1998, pp. 253-262.

9. V. Manca, C. Martin-Vide, Gh. Păun, Iterated GSM mappings: A collapsing
hierarchy, Jewels are Forever (J. Karhumaki, H. Maurer, Gh. Păun, G. Rozenberg,
eds.), Springer-Verlag, 1999, 182–193.

10. Gh. Păun, On the iteration of gsm mappings, Rev. Roum. Math. Pures Appl., 23,
4 (1978), 921–937.

11. G. Rozenberg, A. Salomaa (eds.): Handbook of Formal Languages. Springer-
Verlag, Berlin, 1997.

12. A. Salomaa: Formal Languages. Academic Press, New York, 1973.
13. K. Wagner and G. Wechsung: Computational Complexity. Deutscher Verlag der

Wissenschaften, Berlin, 1986.

The Computational Power of Continuous

Dynamic Systems

Jerzy Mycka1� and José Félix Costa2

1 Institute of Mathematics,
University of Maria Curie-Sklodowska

Lublin, Poland
Jerzy.Mycka@umcs.lublin.pl

2 Department of Mathematics, I.S.T.
Universidade Técnica de Lisboa

Lisboa, Portugal
fgc@math.ist.utl.pt

Abstract. In this paper we show how to explore the classical theory
of computability using the tools of Analysis: a differential scheme is
substituted for the classical recurrence scheme and a limit operator is
substituted for the classical minimalization. We show that most relevant
problems of computability over the non negative integers can be dealt
with over the reals: elementary functions are computable, Turing ma-
chines can be simulated, the hierarchy of non computable functions be
represented (being the classical halting problem solvable in some level).
The most typical concepts in Analysis become natural in this framework.

1 Introduction and Motivation

The theory of analog computation, where the internal states of a computer are
continuous rather than discrete, has enjoyed a recent resurgence of interest.
This stems partly from a wider program of exploring alternative approaches to
computation, such as neural and quantum computation; partly as an idealization
of numerical algorithms where real numbers can be thought of as entities in
themselves, rather than as strings of digits [19]; and partly from a desire to
use the tools of computation theory to better classify the variety of continuous
dynamical systems that model our world (or at least its classical idealization)
[3,9,18]. If we are to make the state of a computer evolve in a continuum it makes
sense to consider making its progress in time continuous too. While a few efforts
have been made in the direction of studying computation by continuous-time
dynamical systems [9,13,18,1], no particular set of definitions has become widely
accepted. Thus analog computation has not yet experienced the unification that
digital computation did through Turing’s work in 1936.

In this work we go back to the roots of analog computation theory by starting
with Claude Shannon’s so-called General Purpose Analog Computer (GPAC).

� Corresponding author

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 164–175, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Computational Power of Continuous Dynamic Systems 165

This was defined as a mathematical model of an analog device, the Differential
Analyser, the fundamental principles of which were described by Lord Kelvin
in 1876 [8]. Just as polynomial operations are basic to the Blum-Shub-Smale
(BSS) model of analog computation [2], polynomial differential equations are
basic to the GPAC. Rubel [16] proposed the Extended Analog Computer (EAC).
This model has the same computational power as the GPAC but also produces
the solutions of a broad class of Dirichlet boundary-value problems for partial
differential equations.

The first presentation of a Theory of Recursive Functions over the Reals was
attempted by Cris Moore [9]. Real recursive functions are generated by a funda-
mental operator, called differential recursion. The other fundamental operator is
the taking of limits [11]. Between 1996, since Moore’s seminal paper, and 2002
we have been working with the single concept of differential recursion. In [6]
we show that a linearizarion of the differential recursion scheme gives rise to an
analog characterization of the class of (Kalmar’s) elementary functions. In [5]
and [7] we show that the GPAC is not closed under iteration and that a sub-
class of real recursive functions coincides with the class of GPAC-computable
functions. In [11] we finally show how to capture higher computational classes
through the limit operator. Manuel Campagnolo in [4] showed also that other
computational complexity classes can be captured through appropriate struc-
tured differential schemata or adding simple (bounded) integration. About the
hierarchy of limits, we may add further topics. We show that we can embed the
entire arithmetical hierarchy within the limit hierarchy up to some finite level
(up to a finite number of limit operations), where the analytic hierarchy starts
to be implemented. The use of limits gives rise to uncomputable functions, e.
g., at some level we get the halting problem solved. To these previous aspects,
we should add the impact of a further one: in the basis of the limit hierarchy
we can still find a set of functions over the reals indeed computable by physical
means, theoretically by Claude Shannon’s GPAC and practically by the Differ-
ential Analyser of Vannevar Bush. Hence, in the basis we have truly computable
functions in the physical sense. Can we envisage engines with a greater power?
A final remark helps the reader to understand that computable numbers can be
thought as entire computable structures, indivisible entities [9] or computable by
digits (as in the classical way), using continued fractions. Strong uncompressible
numbers like Chaitin’s halting probability are computable in very precise levels
of the limit hierarchy.

Now we finish by recalling to the reader Moore’s seminal paper [9] published
in 1996. Herein, we try to reformulate many of his constructs that failed to have
a strong foundational basis. Reimplementation of the arithmetical hierarchy, and
analytical hierarchy by means of continued fractions, are included in this paper
in his honour, just to say that after all every construct in [9] can still stand up
on top of our hierarchy of limits.

166 J. Mycka and J.F. Costa

2 Recursive Functions over the Reals with Bounded
Differential Recursion and Infinite Limits

We give a new definition of real recursive functions, which is a derivative of the
original definition found in [9].

However it is invented to avoid problems involved in the latter. It is important
to see that the following definition is based on the vector operations.

Definition 2.1. The set of real recursive vectors is generated from the real re-
cursive scalars 0, 1,−1 and the real recursive projections Ii

n(x1, . . . , xn) = xi, 1 ≤
i ≤ n, n > 0, by the operators:

1. composition: if f is a real recursive vector with n k-ary components and g
is a real recursive vector with k m-ary components, then the vector with n
m-ary components (1 ≤ i ≤ n)

λx1 . . . xm.fi(g1(x1, . . . , xm), . . . , gk(x1, . . . , xm))

is real recursive.
2. differential recursion: if f is a real recursive vector with n k-ary components

and g is a real recursive vector with n k + n + 1-ary components, then the
vector h of n k + 1-ary components which is the solution of the Cauchy
problem for 1 ≤ i ≤ n

hi(x1, . . . , xk, 0) = fi(x1, . . . , xk),

∂yhi(x1, . . . , xk, y) = gi(x1, . . . , xk, y, h1(x1, . . . , xk, y), . . . , hn(x1, . . . , xk, y))

is real recursive whenever h is of the class C1 on the largest interval con-
taining 0 in which a unique solution exists.

3. infinite limits: if f is a real recursive vector with n k + 1-ary components,
then the vectors h, h′, h′′ with n k-ary components (1 ≤ i ≤ n)

hi(x1, . . . , xk) = lim
y→∞ fi(x1, . . . , xk, y),

h′
i(x1, . . . , xk) = lim inf

y→∞ fi(x1, . . . , xk, y),

h′′
i (x1, . . . , xk) = lim sup

y→∞
fi(x1, . . . , xk, y)

are real recursive, whenever these limits are defined for all 1 ≤ i ≤ n.
4. Arbitrary real recursive vectors can be defined by assembling scalar real re-

cursive components of the same arity.
5. If f is a real recursive vector, than each of its components is a real recursive

scalar.

Because every function has at least one finite syntactical description, hence
the number of real recursive functions is countable. In this way we can observe

The Computational Power of Continuous Dynamic Systems 167

that the system of functions given by our definition is constructive and not too
large.

Let us discuss carefully the details of the definition. For differential recursion
we restrict a domain to an interval of continuity. This operator gives the same
class Ck for a defined function as the given functions are from. This eliminates
the possibility of defining such functions as λx.|x| without the limit operator. We
excluded here the possibility of operations on undefined functions: our functions
are strict in the meaning that for undefined arguments they are also undefined.
But to obtain some interesting functions we should improve the power of our
system by an addition of the operators of infinite limits. Let us point out that
introducing of infinite limits gets discontinuous functions.

Following [20] (chapter 3), consider a real recursive function f such that: (i) f
is continuous on [0,∞) except possibly for a finite number of jump discontinuities
in every finite subinterval; (ii) there is a positive number M such that |f(t)| ≤
Mekt for all t ≥ 0. Then we say that f belongs to the class Lk. Additionally let
L =

⋃
k>0 Lk.

Proposition 2.1. If f ∈ Lk, then the Laplace transform L(f)(x) exists for
x > k and it is real recursive.

Proof. From the condition (ii) we have |f(t)|e−kt ≤ M . Now we can proceed in
the following way:∫ y

0

|f(t)|e−xtdt =
∫ y

0

|f(t)|e−kte−(x−k)tdt ≤
∫ y

0

Me−(x−k)tdt.

Now to check an existance of the Laplace transform it is sufficient to take
limy→∞

∫ y

0
Me−(x−k)tdt which is defined only if x > k, and in this case is given

by M
x−k . ��

If the Laplace transform of f exists, then f is said to be of exponential order:
it exists for x greater than some real number k. If the Laplace transform of f
exists, and L(f)(s) is defined for s > 0, then f is of subexponential order.

We can also present the proposition, which connects inverse Laplace trans-
form with real recursive functions.

Proposition 2.2. Let F,G be Laplace transforms of some real recursive func-
tions. Then inverse Laplace transforms L−1(FG), L−1(F + G) are also real re-
cursive functions.

The above proposition is a consequence of properties of inverse Laplace trans-
form, namely convolution and linearity.

To illustrate further this transformation let us point out that if f is a n+ 1-
ary real recursive function, then its derivative ∂yf(x1, . . . , xn, y) is a real recur-
sive function. This result can be obtained directly by limits or for some func-
tions by properties of Laplace transform. For example, let f(x) = xn, n ≥ 0,
then L(f)(s) = n!

sn+1 . By the known property of Laplace transform we have:
L(∂xf(x))(s) = sL(f(x)) − f(0) = n!

sn , using repeatedly the convolution op-
eration for 1

s we get L−1(n!
sn)(x) = nxn−1. Derivatives are physical realizable:

168 J. Mycka and J.F. Costa

the class of differential algebraic functions is closed under derivatives, making a
large class of derivatives physical realizable. Let us give without a proof some
examples of functions generated with the definition of real recursive functions.

Proposition 2.3. The functions +,×,−, exp, sin, cos, λx. 1x , /, ln, λxy.x
y,

the Kronecker δ function, the signum function, and absolute value are real recur-
sive functions. The Heaviside Θ function (equal to 1 if x ≥ 0, otherwise 0), the
binary maximum max, the square-wave function, and the floor function λx.)x*
are all real recursive too.

Because the set of natural numbers can be defined by real recursive func-
tions, hence we can extend the definition of real recursive numbers for func-
tions with a domain in Nk × Rn, k, n ≥ 0, by the following method: a function
f : Nk × Rn → Rm, n ≥ 0 is called real recursive if f(n1, . . . , nk, y1, . . . , yn) =
F (n1, . . . , nk, y1, . . . , yn), for some real recursive function F : Rk+n → Rm.

We gave the general definition of real recursive functions. For proper analy-
sis of functions it is important to control the domain and singularities of func-
tions. We can postulate new operators which may check the points: are they
in the domain of some functions or not. For any function f : Rn+1 → R let

ηyf(x̄, y) =
{

1 if limy→∞ f(x̄, y) is defined,
0 otherwise. In the analogous way we can de-

fine ηi
yf(x̄, y), ηs

yf(x̄, y) equal to 1 if lim infy→∞ f(x̄, y) is defined (resp. lim sup),
otherwise equal 0. The below proposition is cited after [11].

Proposition 2.4. The functions ηyg, η
i
yg, η

s
yg are total real recursive functions

if g is total real recursive function.

An iteration of a given function plays the important role in computability
theory. For given function h(x) we can built the consecutive values:

x, h(x), h(h(x)), . . . , h(. . . (h(x)) . . .)︸ ︷︷ ︸
k

,

They are usually denoted by hk(x). We can present the result (cf. [11]) about
a possibility of such construction in the set of real recursive functions.

Proposition 2.5. Let h : R→ R be a real recursive function. Then the function
H : N ×R→ R, H(n, x) = hn(x) is real recursive too.

The above result can be easily extended for vectors.
As a corollary we can obtain the fact that for a real recursive function f :

Rn+1 → R its finite product F1(n, x̄) =
∏n

i=0 f(i, x̄) and finite sum F2(n, x̄) =∑n
i=0 f(i, x̄) are real recursive.
Now we use another notion of the classical theory of computability in the

analog context. A set S ⊂ R is called a real recursive set if it has a real recursive
characteristic function.

Proposition 2.6. The sets of integer numbers Z, natural numbers N , rational
numbers Q, the set of all algebraic reals are real recursive sets.

The Computational Power of Continuous Dynamic Systems 169

Proof. For Z it is sufficient to use δ(sinπx) as a characteristic function χZ . Then
χN (x) = χZ(x)Θ(x).

For Q a construction is more troublesome. Let us start with an auxiliary
function f(n, x) =

∏n
i=1(1−χZ(xi)). Such a function is equal to 0 iff x is of the

form p
q , p, q ∈ Z, where 1 ≤ q ≤ n, otherwise 1. Going to infinity we can define

χQ(x) = 1− lim
z→∞ f()z*, x).

Let us use a letter A as a symbol of the set of algebraic number. If x ∈ A,
then there exists such a polynomial P of some degree n with natural coefficients
a0, . . . , an and vector of natural numbers i0, . . . , in (describing signs of the co-
efficients of P) such that

∑n
j=0 aj(−1)ijxj = 0. We would like encode these

two vectors into two natural numbers a, i. The known result (see [12]) says us
that there exists such a (natural) primitive recursive function β that β(a, 0) =
n, β(a, j) = aj−1, 1 ≤ j ≤ n + 1, β(i, 0) = n, β(i, j) = ij−1, 1 ≤ j ≤ n + 1. Then
the value of P for x is given as P (x, a, i) =

∑β(a,0)
j=0 β(a, j − 1)(−1)β(i,j−1)xj .

Because natural primitive recursive functions are real recursive (see [5]), hence
P is a real recursive function. Let us extended this function into

P ′(x, y, z) =
{

1 y or z are not natural numbers or β(y, 0) �= β(z, 0),
P (x, y, z) otherwise.

Then x is an algebraic number only in this case iff there exist such y, z that
P ′(x, y, z) = 0. This condition can be checked by the following construction: let
p(x, y, w) = |P ′(x, y, w)| + 1 for P ′(x, y, z) �= 0, otherwise 0;
then p′(x, z) =

∏z�
k=0

∏z�
j=0 p(x, k, j) will be equal to zero only in this case if

there exist such a polynomial P encoded by k, j ≤)z*, that its value in x is
equal to 0. Now to find a characteristic function of A suffices to write:

χA(x) =
{

1 ηzp
′(x, z) = 1 and limz→∞ p′(x, z) = 0,

0 otherwise.

��

3 η-Hierarchy

Here we aproach a new problem. Are there different levels of difficulty in a
computation if it goes beyond the Turing computability? The natural measure
of a function’s difficulty can be join with the degree of (dis)continuity. The above
considerations lead us to the conception of η-hierarchy which describe the level
of nesting limits in the definition of a given function.

We should start with the notion of syntactic n-ary descriptions of real re-
cursive vectors. Let us introduce some kind of symbols called basics descriptors
for all basic real recursive functions. The combination of such descriptions for
given real recursive functions will form a new description of another function.
Let us start with basic functions: ijk is a k-ary description for projection Ij

k for all
1 ≤ j ≤ k; 1k, 1̄k, 0k are k-ary descriptions for constants 1,−1, 0 used with k vari-
ables. We must add also operator symbols (descriptors) for all introduced opera-
tors: dr - for a differential recursion, c - for a composition, l, ls, li for a respective

170 J. Mycka and J.F. Costa

kind of limits (lim, lim sup, lim inf). The collection of descriptors of real recursive
vectors can be inductively defined as follows: ijn, 1n, 1̄n, 0n are n-ary descriptions
of Ij

n, 1 ≤ j ≤ n ∈ N , f(x1, . . . , xn) = 1, f(x1, . . . , xn) = −1,f(x1, . . . , xn) = 0
for all (x1, . . . , xn) ∈ Rn, n ∈ N , respectively. If 〈h〉 = 〈h1, . . . , hm〉 is a k-
ary description of the real recursive vector h and 〈g〉 = 〈g1, . . . , gk〉 is a n-ary
description of the real recursive vector g, then c(〈h〉, 〈g〉) is a n-ary descrip-
tion of the composition of h and g. For differential recursion we can write:
if 〈h〉 = 〈h1, . . . , hn〉 is a k-ary description of the real recursive vector h and
〈g〉 = 〈g1, . . . , gn〉 is a k + n + 1-ary description of the real recursive vector g,
then dr(〈h〉, 〈g〉) is a k+1-ary description of the solution of the Cauchy problem
for h, g (if such a solution exists). Finally, if 〈h〉 = 〈h1, . . . , hm〉 is a n + 1-ary
description of the real recursive vector h, then l(〈h〉), li(〈h〉), ls(〈h〉) is a n-ary
description of an apropriate infinite limit (respectively lim, lim inf, lim sup) of h
(if such limits exist).

Definition 3.1. For a given n-ary description s of a vector f let Ek
i (s) (the

η-number with respect to i-th variable of the k-component) be defined as fol-
lows: E1

i (0n) = E1
i (1n) = E1

i (1̄n) = 0; Em
i (c(〈h〉, 〈g〉)) = max1≤j≤k(Em

j (〈h〉) +
Ej

i (〈gj〉)), where h is a n components k-ary vector and g is a k-components m-
ary vector. For a differential recursion we distinguish two cases: if i ≤ k then
Ej

i (dr(〈f〉, 〈g〉)) =
max(E1

i (〈f1〉) . . . , E1
i (〈fn〉), E1

i (〈g1〉) . . . , E1
i (〈gn〉), E1

k+1(〈g1〉), . . . , E1
k+1(〈gn〉));

otherwise if i = k + 1: Ej
i (dr(〈f〉, 〈g〉)) =

max0≤m≤n(max(E1
k+m+1(〈g1〉), . . . , E1

k+m+1(〈gn〉))) where f is a n components
k-ary vector and g is a n components k+n+ 1-ary vector. Finally for limits we
have Ek

i (l(〈h〉)) = Ek
i (li(〈h〉)) = Ek

i (ls(〈h〉)) = max(Ek
i (〈h〉), Ek

n+1(〈h〉)) + 1,
where h is a k components n + 1-ary vector.

For the n-ary description s of m components we can define now E(〈h〉) =
maxk maxi E

k
i (〈h〉) for 1 ≤ i ≤ n, 1 ≤ k ≤ m. Now we can deal with the η-

number for a real recursive functions where η(f) can be defined as the minimum
of E(〈f〉) for all possible descriptions of the function f . We are ready to conclude
with definition of η-hierarchy as a family of Hj = {f : η(f) ≤ j}.

Let us start with recalling of some real recursive functions from previous
propositions.

Example 3.1. From the functions given in Proposition 2.3, we have
+,×,−, exp, sin, cos,λx. 1x , /, ln,λxy.xy are in H0, the Kronecker δ function,
the signum function and absolute value are in H1. The Heaviside function Θ,
the binary maximum max, the square-wave function and the floor function are
in H1.

To see that our framework is strongly supported by one such classical theory
of computation (Shannon’s Theory of Analog Computation), we add physical
realizability to the basis of recursive functions over the reals stated as the fact
that a subclass of H0 coincides with the functions GPAC-computable. Detailed
proof of this statement can be found in [7]. Let us give here the examples of

The Computational Power of Continuous Dynamic Systems 171

some functions which have the important significance in mathematics and can
be expressed in terms of real recursiveness. Let us point out that Rubel showed
in [15] incompleteness of the GPAC-computable functions proving the Euler’s
Γ -function and the Riemann ζ-function are not GPAC-computable.

Example 3.2. The Euler’s Γ -function is real recursive function from the class
H1.

Let us recall that Laplace transform of tx, x > −1, is equal to Γ (x+1)
st+1 , hence Γ (y)

for y > 0 is real recursive and (because Laplace transform uses only one limit)
in H1. Let us add that Marion Pour-El (see [14]) proved that Γ is not GPAC-
computable so its class is most probably strictly H1. By simple construction we
give the same result for the Riemann ζ-function. We can also add the corollaries
of the constructions used in Propositions 2.5, 2.6.

For given function f from the class Hi, i ≥ 0, its iteration F (n, x) = fn(x)
is in the class Hmax (1,i).

By the class of some set we understand the class of its characteristic function.
Then the sets of natural and integer numbers are in H1, the set of rational
numbers Q is in H3, and the set of algebraic numbers is in H5.

4 The Halting Problem

Now we can turn to some application of the η operator. We consider a possibility
of a process of Turing machines simulation by real recursive functions. Such
problems were considered by Moore [9], however his assumptions were connected
with a wrong established η-operator. A Turing machine is here understood as
usual, more complete description can be found in [11], where is also a proof of
the below proposition.

Proposition 4.1. There are real recursive functions from the class H1, which
can simulate any Turing machine.

Let us signal a few important questions concerned to Turing machines. The
first problem is known as the halting problem: does the machine M for some in-
put reach the final state? There is not a natural recursive characteristic function
of this problem. The method of simulation of Turing machines given above can
resolve it in the simple way with real recursive functions.

Proposition 4.2. For any Turing machine M , there exists a real recursive func-
tion the class H3 which is the characteristic function of the halting problem
for M .

The proof given in [11] uses a construction of a sequence of configurations. To
check whether this sequence is ended by a configuration with some final step or
it is infinite the η-operator is taken.

172 J. Mycka and J.F. Costa

5 Arithmetical Hierarchy and Computable Numbers

We will proceed now with the relations of natural numbers taken from the arith-
metical hierarchy. The class Σ0

0 = Π0
0 contains only such relations, which have

recursive characteristic functions. The upper stages of this hierarchy can be
constructed from the lower ones in the following way:Σ0

n+1 = {P : (∃P ′ ∈
Π0

n)P (m̄) ≡ ∃sP ′(m̄, s)}, Π0
n+1 = {P : (∃P ′ ∈ Σ0

n)P (m̄) ≡ ∀sP ′(m̄, s)}, where
P ⊆ Nk, P ′ ⊆ Nk+1, k ≥ 1. To complete our hierarchies we can add the follow-
ing equation Δ0

n = Σ0
n ∩Π0

n, n ≥ 0. Now let us correlate this infinite hierarchy
of sets and relations to the η-hierarchy. We must return to the Turing machine
and its simulation by real recursive functions.

From Proposition 4.1 and from the fact that all natural recursive sets and
relations have Turing computable total characteristics we get the following con-
clusion:

Proposition 5.1. Every natural recursive set or relation is in H2, i.e. Σ0
0 =

Π0
0 ⊂ H2.

The next element of our investigation has to deal with higher levels of arith-
metical hierarchy. For this purpose we need to analyse the method of use of
quantifiers. For every function f : Rn+1 → R we can construct such real recur-
sive function ρf : Rn → R that

ρf (x̄) =
{

1 ∃y ∈ Nf(x̄, y) = 0,
0 ∀y ∈ Nf(x̄, y) �= 0.

To this effect we start with a description of the function fc(x̄, y) = 1−δ(f(x̄, y)).
This function has the following property fc(x̄, y) = 1 ≡ f(x̄, y) �= 0, fc(x̄, y) =
0 ≡ f(x̄, y) = 0. It is easy to observe that now

lim
z→∞

z∏
j=0

fc(x̄, j) =
{

0 ∃y ∈ Nf(x̄, y) = 0,
1 ∀y ∈ Nf(x̄, y) �= 0.

Hence ρf (x̄) = 1− limz→∞
∏z�

j=0 fc(x̄, j). Finally, by properties of the iteration,
we can claim that ρf ∈ Hi+2. From the above considerations we can deduce the
following theorem.

Proposition 5.2. The sets and relations from Σ0
i , Π

0
i belong to Hi+2 for i ≥ 0.

Let us add that by computable reals (points) we understand values of real
recursive functions with an arity 0.

We can prove that all real numbers given by a continued fraction built from
real recursive sequences of naturals are real recursive, and conversely that for a
real number its continued fraction expansion can be described by a real recursive
function. Continued fractions, together with the search for zeroes’ operator, can
be used to implement the Analytic Hierarchy in the same way as Cris Moore did
it in [9].

The Computational Power of Continuous Dynamic Systems 173

Proposition 5.3. Let x be a real number given as a continued fraction x =
[x0, x1, x2, . . .]:

x = x0 +
1

x1 + 1

...

.

Then φ(x, n) = xn is a real recursive function. Conversely if f : R → R is a
real recursive function, which maps natural numbers to natural numbers, then
x[f] = [f(0), f(1), f(2), . . .] is a real recursive number.

Proof. For the first part of this proposition it is sufficient to define3 φ(x, n) =

)gn(x)*, where g(x) =
{

0 x ∈ Z,
1

x−x� x �∈ Z.

Conversely, for a given f we use the real recursive map

t(x, k) =
{

(1
x + f(k − 1), k − 1), k > 0,

(x, 0), k = 0.

Now if T (k) = I1
2 (tk(f(k), k)), then

T (k) = f(0) +
1

f(1) + 1

. . .+ 1
f(k)

and we can find x as limy→∞ T ()y*). ��

In this sense e, π are computable reals: π = 3 + [7, 15, 1, 292, 1, . . .], e =
2 + [1, 2, 1, 1, 4, 1, 1, . . . , 2n, 1, 1, . . .]. Let the continued fraction for x be writ-
ten [x0, x1, . . .]. Then the limiting value of the geometric mean is almost al-
ways Khinchin’s constant (failing only for a countable number of reals) K =
limn→∞ n

√
x0 . . . xn, which is real recursive number as: K = limn→∞

∏n
k=1(1 +

1
k(k+2))

ln k
ln 2 .

We can also prove that many real numbers which are not computable in
Turing sense are real recursive. Let us choose some function f : N → {0, 1}
with a graph Gf (x, y) ≡ y = f(z) which belongs to the class Δj , j > 1. Then
we can construct the number x equal to limn→∞

∑n
i=0(

3f(i)
4i + 1−f(i)

4i), which is
uncomputable in Turing sense. However in the obvious manner it is real recursive.

Finally let us mention a real recursive character of a particular Turing un-
computable number, namely Chaitin’s constant.

Proposition 5.4. Chaitin’s Ω constant is a real recursive number.

Proof. As usual let Ω =
∑

p 2−|p|, where p is a binary representation of halting
programs (without inputs) of Turing machine with a property, that no proper
prefix of a syntactically correct program is a syntactically correct program.

Let U be some Turing universal machine working on Turing programs without
inputs given on a tape by a specific binary coding. This coding has such a
3 In the case n = 0 we have g0(x) = x.

174 J. Mycka and J.F. Costa

property that if a binary sequence w encodes a syntactically correct program,
then no proper prefix of w encodes a syntactically correct program. It can be
simply obtain, for example by a convention that the beginning of w contains
a length of w. Let us assume that bn(i) is a binary representation of natural
number i given by n digits (possibly with zeroes at the beginning).

We can define

F (n) =
n∑

i=1

[
2i+1−1∑

j=0

H ′
U (0, bi+1(j))]2−(i+1),

where H ′
U is a real recursive function with such a property that H ′(0, x) = 0

iff x does not encode a syntactically correct program, or if x encodes a correct
program which is not halting; otherwise H ′ has the value 1. This function can
be easily obtained from a characteristic function HU of the halting problem
for U , because checking a syntactical correctness of a program can be done by
a natural total recursive function (hence by a real recursive function too). An
existance of such a function is guaranteed by Proposition 4.2. A tape is fulfilled
only by a binary sequence bi+1(j) with a length i + 1. The final step is given as
Ω = limn→∞ F (n). ��

6 Conclusions

We introduced a framework of real recursive functions (i. e. an inductive set) in
such a way that (a countable set of) functions over the reals exist that simulate
arbitrary Turing machines, decide the halting problem, and decide all levels of the
arithmetic hierarchy. Such a class of functions includes in a very natural way the
elementary functions of Analysis, and real numbers computable in the Turing
sense. The main ingredients with regard to Kleene’s theory, are the following
closure operators: a scheme of differential recursion substitutes for recursion and
the taking of infinite limits substitutes for minimalization.

Assume for simplicity that with limits we can decide whenever a real-valued
function is in C0 for non negative values4. We know that the classical problem of
knowing if a given unary computable function is everywhere 0 is undecidable: this
undecidability result is based on standard methods like reducibility via s-m-n the-
orem. With the toolbox of Analysis we have different but nevertheless standard
methods too: We can take the absolute value of a given such function f , namely
|f(x)|, and integrate from 0 to infinity; we then have I(f) =

∫∞
0 |f(x)|dx = 0

if and only if f is 0 in [0,∞); δ(I(f)) provides a characteristic to such a prob-
lem. We believe that our most general framework, envolving infinite limits, have
enough ingredients to allow the translation of classical computability and clas-
sical computational complexity problems into Analysis. We do believe that such
translations might be a solution to open problems described in analytic terms:
we are now much envolved in the definition of analog classes P and NP.

4 We are ready to give details of such method in the forthcoming paper.

The Computational Power of Continuous Dynamic Systems 175

Acknowledgements We would like to thank Cris Moore for many discus-
sions on the more obscure results presented in his seminal paper [9]. Our paper
was design to present a most general framework for the Recursion Theory on
the Reals, showing that Moore’s original ideas can still be fully implemented in
our conceptual scheme.

References

1. A. Ben-Hur, H.T. Siegelmann and S. Fishman. A theory of complexity for contin-
uous time systems. Journal of Complexity, 18(1): 87-103, 2002.

2. L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation,
Springer, 1998.

3. M. S. Branicky. Universal computation and other capabilities of hybrid and con-
tinuous dynamical systems. Theoretical Computer Science, 138(1):67-100, 1995.

4. M. L. Campagnolo. Computational complexity of real valued recursive functions
and analog circuits, PhD dissertation, Universidade Tecnica de Lisboa, 2001.

5. M. L. Campagnolo, C. Moore, and J. F. Costa. Iteration, inequalities, and differ-
entiability in analog computers. Journal of Complexity, 16(4):642-660, 2000.

6. M. L. Campagnolo, C. Moore, and J. F. Costa. An analog characterization of the
Grzegorczyk hierarchy. Journal of Complexity, 18(4):977–1000, 2002.

7. D. Graça and J. F. Costa. Analog computers and recursive functions over the reals.
Journal of Complexity, 19(5): 644-664, 2003.

8. W. Thomson (Lord Kelvin). On an instrument for calculating the integral of the
product of two given functions. Proc. Royal Society of London, 24: 266-268, 1876.

9. C. Moore. Recursion theory on the reals and continuous-time computation. Theo-
retical Computer Science, 162:23-44, 1996.

10. J. Mycka. μ-Recursion and infinite limits. Theoretical Computer Science, 302:123-
133, 2003.

11. J. Mycka and J. F. Costa. Real recursive functions and their hierarchy, Journal of
Complexity, 20(6): 835-857, 2004.

12. P. Odifreddi. Classical Recursion Theory, North-Holland, 1989.
13. P. Orponen. A survey of continuous-time computation theory. In D.-Z. Du and K.-

I. Ko, (eds), Advances in Algorithms, Languages and Complexity, 209-224, Kluwer
Academic Publishers, 1997.

14. M. B. Pour-El. Abstract computability and its relations to the general purpose
analog computer. Transactions Amer. Math. Soc., 199:1-28, 1974.

15. L. A. Rubel. Some mathematical limitations of the general-purpose analog com-
puter. Advances in Applied Mathematics, 9:22-34, 1988.

16. L. A. Rubel. The extended analog computer. Advances in Applied Mathematics,
14:39-50, 1993.

17. C. Shannon. Mathematical theory of the differential analyzer. J. Math. Phys. MIT,
20:337-354, 1941.

18. H. T. Siegelmann and S. Fishman. Analog computation with dynamical systems.
Physica D, 120: 214-235, 1998.

19. J. Traub and A. G. Werschulz. Complexity and Information, Cambridge University
Press, 1998.

20. A. Vretblad. Fourier Analysis and Its Applications, Springer-Verlag, 2003.

Abstract Geometrical Computation for

Black Hole Computation

(Extended Abstract)

Jérôme Durand-Lose�

Laboratoire d’Informatique Fondamentale d’Orléans, Université d’Orléans,
B.P. 6759, F-45067 ORLÉANS Cedex 2.

Abstract. The Black hole model of computation provides super-Turing
computing power since it offers the possibility to decide in finite (ob-
server’s) time any recursively enumerable (R.E .) problem. In this paper,
we provide a geometric model of computation, conservative abstract geo-
metrical computation, that, although being based on rational numbers,
has the same property: it can simulate any Turing machine and can de-
cide any R.E . problem through the creation of an accumulation. Finitely
many signals can leave any accumulation, and it can be known whether
anything leaves. This corresponds to a black hole effect.

Key-words: Abstract geometrical computation, Black hole model, Energy conserva-

tion, Malament-Hogarth space-time, Super-Turing computation, Turing universality,

Zeno phenomena.

None of the physicist aspects of this paper is to be considered as definitely true.
The author, being a computer scientist with little knowledge on the matter, would not
feel insulted if one would consider these mere inventions/illusions. However, we do not
pretend to explain or describe black holes, but just to provide a computer scientist
insight and model mostly directed to the computer science community. This paper
could have been presented as a model of computation with special features, but since
so much similarities exist, we stress on the correspondence with the Black hole model.

1 Introduction

Theoretical physicists address the limits of the Church-Turing thesis as they
get insights of possible space-times abiding Einstein’s equations but providing
super-Turing computing power [Hog94]. The idea is to have the possibility to
use an infinite amount of time on a separate future endless curve to try solving
a recursively enumerable (R.E .) problem, such that the result, or the absence of
any result, can be retrieved in finite time in the main curve. For the theoretical
computer scientist, this is related to infinite Turing computation or computation
on ordinals [Ham02].

� This research was done while the author was member of LIP, ÉNS Lyon and of
Université de Nice-Sophia Antipolis, France.

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 176–187, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Abstract Geometrical Computation for Black Hole Computation 177

Malament-Hogarth space-times [Hog00, EN02] provides this. Roughly speak-
ing, the idea is the following. General relativity permits space-times in which
time runs with different “speeds” in different regions. We arrange the life-lines
of the computer and the observer in such a way that the machine has an infinite
amount of time ahead of it; but any signal it returns is received by the observer
within a bounded local delay (measured on the observer’s clock). After this finite
delay, the observer knows whether the computation ever stopped (by noticing
whether anything was received) and what the answer is. It is thus possible to
decide any R.E . problem in finite time.

Abstract geometrical computation [DL04] considers Euclidean lines. The sup-
port of space and time is thus R. Computations are produced by signal machines
which are defined by a finite set of meta-signals and a finite set of collision
rules. Signals are atomic information, corresponding to meta-signals, moving at
constant speed thus generating Euclidean line segments on space-time diagrams.
Collision rules are pairs (incoming meta-signals, outgoing meta-signals), that de-
fine a mapping (which means determinism) over sets of meta-signals. They define
what happens when signals meet, i.e. at the extremities of the line segments.

A configuration (at a given time or the restriction of the space-time diagram
to a given time) is a mapping from R to meta-signals, collision rules, and two
special values: void (i.e. nothing there) and accumulations (amounting for black
holes). There should be finitely many positions not mapped to void. The time
scale is R+, so that there is no such thing as a “next configuration”. The follow-
ing configurations are defined by the uniform movement of each signal, the speed
of which is defined by its associated meta-signal. When two or more signals meet,
this produces a collision defined by a collision rule. In the configurations follow-
ing a collision, incoming signals are removed and outgoing signals corresponding
to the outgoing meta-signals are added.

Zeno like acceleration and accumulation can be constructed as on the right of
Fig. 1. This provides the black hole-like artifact for deciding R.E . problems. But
accumulations can lead to an uncontrolled burst of signals producing infinitely
many signals in finite time (as in the right of Fig. 1). In order to avoid this, we
impose a conservativeness condition on the rules: a positive energy is defined
for every meta-signal, the sum of these energies must be conserved by each rule.
Thus no energy creation is possible, and the number of signals is bounded.

Each signal corresponds to a meta-signal which indicates its slope on the
space-time diagram. Since there are finitely many meta-signals, there are finitely
many slopes. This limitation may seem restrictive and unrealistic, even awkward
as a quantification inside an analog model of computation. Let us notice that,
first, it comes from cellular automata (CA) (as explained below): once a discrete
line is identified, wherever (and whenever) the same pattern appears, the same
line is expected, thus with the same slope. Second, we give two pragmatic argu-
ments: (1) laws to compute new slopes in collisions are not so easy to design and
pretty cumbersome to manipulate; (2) there is already much computing power.

Abstract geometrical computation comes from the common use in literature
of Euclidean lines to model discrete lines in the space-time diagram of CA to

178 J. Durand-Lose

access dynamics or to design. Cellular automata form a well known and studied
model of computation and simulation. Configurations are Z-arrays of cells the
states of which belong to a finite set. Each cell can only access the states of its
neighboring cells. All cells are updated iteratively and simultaneously. The main
characteristics of CA, as well as abstract geometrical computation, are: paral-
lelism, synchrony, uniformity and locality of updating. The space-time diagrams
of CA are colorings of Z×N with states. Discrete lines are often observed on these
diagrams. They can be the keys to understanding the dynamics and correspond
to so-called particles or signals as in, e.g., [Ila01, pp. 87–94] or [BNR91, HSC01].
They can also be the tool to design CA for precise purposes and then named
signals and used for, e.g., prime number generation [Fis65], firing squad syn-
chronization [VMP70, Maz96] or reversible simulation [DL97]. These discrete
line systems have also been studied on their own [MT99, DM02]. All these pa-
pers, and many more, implicitly use abstract geometrical computation.

Before presenting our results, we want to convince the reader that it is not
just “one more model of computation”. First, it does not come “out of the blue”
because of its CA origin. Second, to our knowledge1, it is the only model that
is a dynamical system with continuous time and space but finitely many local
values. The closest model we know of is the Mondrian automata of Jacopini
and Sontacchi [JS90]. Their space-time diagrams are mappings from Rn to a
finite set of colors. They should be bounded finite polyhedra; we are only ad-
dressing lines –faces are not considered– and our diagrams may be unbounded
and accumulation may happen (they just forbid them). Another close model is
the piecewise-constant derivative system [AM95, Bou99]: Rn is partitioned into
finitely many polygonal regions; the trajectory is defined by a constant deriva-
tive on each region, thus an orbit is a sequence (possibly over an ordinal) of
(Euclidean) line segments. This model is sequential –there is only one “signal”–
and the faces that delimit the regions are artifacts that do not exist in our model.
Nevertheless, it also uses accumulations to decide R.E . problems.

In this paper, space and time are restricted to rationals. This is possible since
all the operations used preserve rationality. All intervals should be understood
over Q, not R. Extending the definitions to real values is automatic but only the
rational case is addressed here.

After formally defining our model in Sect. 2, we rapidly show that any Turing-
computation can be carried out through the simulation of 2-counter automata
in Sect. 3. The values of the counters are encoded by positions (fixed signals
indicates the scale) and the instructions are going forth and back between them.
The continuous nature of space is used here: all 1/2n positions exist.

In Sect. 4, we show how to bound temporally a computation that is already
spatially bounded. This method is constructive and relies on the continuous na-
ture of space and time. The construction generates an accumulation. We explain
how to use these accumulations for deciding R.E . problems in Sect. 5. Conclu-
sion, remarks and perspectives are gathered in Sect. 6.

1 A brief tour of analog/super-Turing models of computation can be found in [DL03,
Chap. 2].

Abstract Geometrical Computation for Black Hole Computation 179

2 Definitions

Abstract geometrical computations are defined by the following machines:

Definition 1 A signal machine is defined by (M,S,R) where M (meta-signals)
is a finite set, S (speeds) is a mapping from M to Q, and R (collision rules) is
a subset of P(M)×P(M) that corresponds to a partial mapping of the subsets
of M of cardinality at least 2 to the subsets of M (both domain and range are
restricted to elements of different speeds).

The elements of M are called meta-signals. Each instance of a meta-signal
is a signal which corresponds to a line segment in the space-time diagram. The
mapping S assigns rational speeds to meta-signals, i.e. the slopes of the segments.
The set R defines the collision rules, noted ρ−→ρ+: what happens when two or
more signals meet. It also defines the intersections of the segments. The signal
machines are deterministic because R must correspond to a mapping.

The extended value set, V , is the union M and R plus two symbols: one for
void, 1, and one for an accumulation (or black hole) ❊. A configuration, c, is a
total mapping from Q to V such that the set { x ∈ Q | c(x) �= 1} is finite.

A signal corresponding to a meta-signal μ at a position x, i.e. c(x) = μ, is
moving uniformly with constant speed S(μ). A signal must start in the initial
configuration or be generated by a collision. It must end in a collision or in
the last configuration. This corresponds to condition 2. in Def. 2. At a ρ−→ρ+

collision, all, and only, signals corresponding to the meta-signals in ρ− (resp.
ρ+) must end (resp. start). No other signal should be present. This corresponds
to 3. in Def. 2. A black hole corresponds to an accumulation of collisions and
disappears without a trace. This corresponds to 4. in Def. 2.

Let Smin and Smax be the minimal and maximal speeds (i.e. the extrema of
S). The causal past, or light-cone, arriving at position x and time t, J−(x, t), is
defined by all the positions that might influence through signals, formally:
J−(x, t) = { (x′, t′) | (0 ≤ Smax(t−t′)− x+x′) ∧ (0 ≤ x−x′ − Smin(t−t′)) } .

Before formally defining the dynamics by space-time diagrams, we want to
point out the black hole formation example of Fig. 1. This example is so simple
(i.e. 4 meta-signals and 2 collision rules) that such a situation cannot be excluded.

(x, t)

J−(x, t)

Fig. 1. Black hole, light-cone and unwanted phenomena.

180 J. Durand-Lose

Definition 2 The space-time diagram, or orbit, issued from an initial configu-
ration c0 and lasting for T 2, is a mapping c from [0, T] to configurations (i.e. a
mapping from Q× [0, T] to V) such that, ∀(x, t) ∈ Q× [0, T] :
1. ∀t∈[0, T], { x ∈ Q | ct(x) �= 1} is finite,
2. if ct(x)=μ then ∃ti, tf∈[0, T] with ti<t<tf or 0=ti=t<tf or ti<t=tf=T s.t.:

– ∀t′ ∈ (ti, tf), ct′(x + S(μ)(t′ − t)) = μ,
– ti = 0 or cti(xi) ∈ R and μ ∈ (cti(xi))+ where xi = x + S(μ)(ti − t),
– tf = T or ctf

(xf) ∈ R and μ ∈ (ctf
(xf))− where xf = x + S(μ)(tf − t);

3. if ct(x) = ρ−→ρ+ ∈ R then ∃ε, 0 < ε, ∀t′ ∈ [t− ε, t+ ε], ∀x′ ∈ [x− ε, x+ ε],
– ct′(x′) ∈ ρ−∪ρ+ ∪ {1},

– ∀μ ∈M , ct′(x′)=μ⇒
∨ {μ ∈ ρ− and t′ < t and x′ = x + S(μ)(t′ − t)),

μ ∈ ρ+ and t < t′ and x′ = x+ S(μ)(t′ − t)).
4. if ct(x) = ❊ then

– ∃ε > 0, ∀(x′, t′) �∈ J−(x, t) s.t. |x−x′|<ε and |t−t′|<ε, ct′(x) = 1,
– ∀ε > 0,

∣∣ { (x′, t′) ∈ J−(x, t) | t−ε<t′<t ∧ ct′(x′) ∈ R }
∣∣ =∞.

On space-time diagrams, the traces of signals represent line segments whose
directions are defined by (S(.), 1) (1 is the temporal coordinate). Collisions cor-
respond to the extremities of these segments. Examples of space-time diagrams
are provided by the various figures. Time is always increasing upwards.

The three right space-time diagrams of Fig. 1 provide examples of possible
but unwanted cases. They are not compatible with Def. 2 if times after the ac-
cumulation are to be considered. In each case, the number of signals is bursting
to infinity and black holes are not isolated. This is unwanted because on the one
hand it corresponds to the free apparition of energy, and on the other hand we
fell that black holes should be dimensionless points. The two remaining space-
time diagrams show even more unwanted cases. We thus introduce the following
restriction that prevents such cases and corresponds to the energy conservation.

Definition 3 A signal machine is conservative when an atomic positive energy
is defined for all meta-signals (E : M → N∗)3 such that the total energy of the
system is preserved, i.e. the sum of all the energy of existing signals is a constant
of the system. This is equivalent to accept only rules that preserve this energy,
i.e. the sum of the energy of incoming meta-signals equals the sum of outgoing
ones.

Conservativeness is straightforward if the condition on rules is satisfied. If it
is not satisfied, it is very easy to built a configuration such that only this rule is
used and then the energy is not preserved.

Property 4 Given a conservative signal machine and an initial configuration,
the number of signal in any following configuration, as well as the number of ac-
cumulations, is bounded (by the total energy divided by the least atomic energy).

2 This definition can easily be extended to the T = ∞ case.
3 Integer are enough, since there are finitely many meta-signals.

Abstract Geometrical Computation for Black Hole Computation 181

Energy can only be lost in “black hole” formation, i.e. accumulation. A sub-
case of conservativeness is when all the meta-signals have the same energy and
the number of in and out meta-signals are always equal. This is the case in the
rest of this paper. We chose to present a more complex notion since it is weaker
and better suits the physical notion of the energy conservation.

3 Turing-Computation Capability

We prove the Turing-computation power of our model by simulating any 2-
counter automaton (a finite automaton couple with two counters, A and B).
The possible actions on any counter are add/subtract 1 and branch if non-zero.
These machines can be described with a six-operations (the three aforementioned
ones for each of the two counters) assembly language with branching labels as
on the left part of Fig. 6 (see [Min67] for more on 2-counter automata).

The simulation is carried out with both counters encoded by relative positions
according to two fixed signals zero and one. These two signals form a scale on
the diagram. The counter A (resp. B) is encoded by a single signal a (b) at
position α2−a (β2−b) as in Fig. 2. The parameter α and β are rationals such
that 1 < α < β < 2; this ensures that the signal a (b) is between zero and one
unless its value is zero and in such a case it is on the other side of one. Let us note
that the values of α and β prevent the signals from occupying the same place and
from being on the scale signals. As can be easily checked on the constructions
in the rest of this section, they also prevent that any collision happens on an
unconcerned signal.

ze
ro

o
n
e

a

0

a

1

a

2

a

3

a

. . .

b

0

b

1

b

2

b

3

b

. . .

Fig. 2. Encoding positions of counters.

The current instruction (e.g. n) is encoded as the signal←−n . It moves back to
zero, bounces, carries out the operation and returns as the next operation. The
five possible configurations are given in Fig. 3.

a = 0 0 < a

b=0

ze
ro

o
n
e

a b

←−n

ze
ro

o
n
e

a b

←−n

0<b

ze
ro

o
n
e

ab

←−n

ze
ro

o
n
e

a b

←−n

ze
ro

o
n
e

ab

←−n

Fig. 3. Encoding of configurations.

182 J. Durand-Lose

The fact that a signal encoding a counter is on the other side of one only
for the value 0 provides an easy way to test whether the counter is zero for
branching or subtracting 1: going rightward one is encountered first if and only
if the value of the counter is 0.

There are two kinds of meta-signals: 8 for the counters and borders, and the
ones generated for the program. The meta-signals of the first kind are: zero, one,
a and b of speed 0 used to mark the borders and to encode A and B, and ←−a
(
←−
b) and −→a (

−→
b) of speed −1 and 1 used to increment/decrement A (B). For the

second kind, each line n of the program is converted into −→n and ←−n of speed 2
and −2, and possibly

−→
n’ and

←−
n’ of speed 3 and −3 to carry out increment and

decrement as explained below.
First any instruction bounces on zero to be on the left of any other signal

and thus be in the right position to start carrying out any instruction. This is
achieved by the following rule:

{zero,←−n } → {zero,−→n }.
The full transformation of a program into a signal machine is not given. We

only detail the collision rules generated for the most complicated case: a A--
instruction (at line n). The rules are the following:

{−→n , one} → {←−−n+1, one}, {−→n , a} → {←−n’ ,−→a },
{zero,

←−
n’} → {zero,

−→
n’}, {−→n’ ,−→a } → {←−−n+1, a}.

All other rules with −→n ,
−→
n’ or

←−
n’ are blank, i.e., the same signals are regenerated.

The effect of above rules is shown in the space-time diagrams of Fig. 5. The
relative position of one and a is very important because a counter already at
zero is not decreased. If such is not the case, the distance between zero and a
is multiplied by 2 as it can easily be geometrically checked on Fig. 5 where the
slopes are indicated by dotted lines.

ze
ro

o
n
e

a = 0

ti
m

e

←−−n+1

a

←−n

−→n ze
ro

o
n
e

0 < a

1

1

1

3

1
3

←−−n+1

←−n

−→n

←−
n’

−→
n’

a

−→a

a

Fig. 4. Implementation of A--.

The instructions A++ does exactly the same thing in reverse, but the zero case
does not have to be considered. We do not give the rules, they can be recovered
from the left diagram space-time of Fig. 5. The non-zero conditional branching is
done by simply noticing that one is met before only if A is zero. This is illustrated
by the last two space-time diagrams of Fig. 5.

All the instructions on B are carried out similarly.

Abstract Geometrical Computation for Black Hole Computation 183
ze

ro

0 < a

o
n
e

←−−n+1

←−n

−→n

←−
n’

−→
n’

a

←−a

a

ze
ro

a = 0

o
n
e

←−−n+1

−→n a

←−n

ze
ro

0 < a

o
n
e

←−m

−→n
a

←−n

Fig. 5. Implementations of A++ and n : IF A!=0 m.

Figure 6 provides three space-time diagrams associated to different initial
values. The pictures are strained vertically in order to fit.

beg: B++
A--
IF A != 0 beg1
IF B != 0 imp

beg1: A--
IF A != 0 beg

pair: B--
A++
IF B != 0 pair
IF A != 0 beg

imp: B--
A++
A++
IF B != 0 imp1
IF A != 0 beg

imp1: B--
A++
A++
A++
IF B != 0 imp1
IF A != 0 beg

�

a=1 b=0

�

a=3 b=0

�

a=5 b=0

Fig. 6. A 2-counter automaton and its simulations for three different initial
values.

The only thing left to consider is the end of the computation, i.e. the treat-
ment of the halt. It is not possible to just make the instruction signal disappears
since this would yields a non conservative rule. To cope with this, one can choose
to let the instruction signal leaves on the left (but this signal could interfere with
the rest of the computation), or to let it bounce indefinitely between zero and
one; in both cases, the number of signals is preserved.

All together, any 2-counter automaton can be simulated by a conservative
signal machine; in fact, any finite number of counters can be included and treated

184 J. Durand-Lose

similarly. Signal machines thus form a model of computation which has at least
Turing-computing capability.

4 Contraction Principle

It is possible to partially strain any space-time diagram as schematized on Fig. 7.
The idea is to decompose the upper part according to two non-collinear vectors.
One vector is used as a frontier (here the one of speed β). A change of scale is
done on the second one (here multiplication by 3 on the axis corresponding to
speed α). This is a strain of a given ratio about the second axe. On Fig. 7, the
dotted lines indicate how the images of two points are computed. The grey parts
indicate the ongoing computation.

This geometrical transformation is easily implemented inside our model: by
switching to strained signal on the frontier, all following computations mimic
the unstrained one. The following meta-signals are added: one for the frontier,
and one strained meta-signal for each initial meta-signal4. All the collision rules
are duplicated so that strained signals behave exactly as unstrained ones. Colli-
sions of the form {frontier and unstrained}→{frontier and strained} are added.
New rules are created to account for the possibility of the frontier to pass ex-
actly on a collision. Conservativeness is preserved by setting identical energies
to corresponding strained meta-signals.

α β
1 1

3α

3

Fig. 7. Strain principle.

With this construction, it is possible to build a structure that scales by one
half the rest of the computation as illustrated on Fig. 8. The two directions used
correspond to v0 and 4v0, where v0 is big enough. In the left picture, nothing
happens. In the middle picture, the lower signal is the frontier and a strain of
ratio 1/2 is done about to the upper signal. In the right picture, a second strain
takes place: the role of the directions are exchanged, and the ratio is still 1/2.
After the two strains, the computation is scaled by 1/2 on both directions, thus
on any direction. The whole computation is scaled by 1/2 and the original meta-
signals can be used again since the computation undergoes no strain after the
second one. This makes it possible to iterate the shrinking.
4 Its speed is computed by some (ax + b)/(cx + d) formula whose coefficients depend

on the parameters which have to verify some easily satisfied conditions (see [DL03,
Chap. 7] for details).

Abstract Geometrical Computation for Black Hole Computation 185

Fig. 8. Shrinking principle.

From now on, only spatially bounded space-time diagrams are considered.
This is sufficient to ensure that the computation remains inside the structure
when shrinking is iterated. It is possible to add some extra signals to restart the
shrinking each time as in the left part of Fig. 9. The right picture represents the
application of this structure to a simulation of a 2-counter automaton.

Fig. 9. Iterated shrinking: structure and examples.

In each space-time diagrams of Fig. 9, there is an accumulation point: there
are infinitely many collisions accumulating to the upper angle of the triangle.
This is a “Zeno effect”: finite (continuous) duration but infinitely many (discrete)
instants. All collisions are in the light cone ending there (and there is nothing
out of it). This corresponds to the accumulation / black hole of Cond. 4 in Def. 2.

5 Black Hole Formation

We consider the simulation of a 2-counter automata such that, when the simu-
lation stops, if the configuration corresponds to acceptance, then the instruction
signal goes on the left. In the case of rejection, another signal would be issued.

The iterated shrinking construction is modified in order not to act on this
signal (i.e. it is always generated unstrained and never strained) so that it leaves
the iterated shrinking. The iterated shrinking provides the black hole effect; these
specially treated signals represent the information that “leaves” the black hole
before the collapsing.

It only remains to get this information or assert that no information had left
(i.e. the computation never stops). This is done by bounding the iterated shrink-

186 J. Durand-Lose

ing by 2 signals that meet after the black hole. If a notification of acceptance
or rejection leaves, they grab it before they meet. So that, at the meeting, they
know whether the computation finished. This is illustrated by Fig. 10.

accumulation

Y

Accepts

accumulation

N

Rejects

accumulation

Does not halt

Fig. 10. Encapsulation of a black hole.

6 Conclusion

We provide a geometrical model of computation that is Turing-computation
universal and has the special features of the Black hole model. We are not using
already existing black holes, but rather creating them on demand (a Malament-
Hogarth space-time is implicitly built). It is not so strange that computation
forms the black hole since they come from the same matter as the machine sent
into. One can also consider that some signals fix black hole formation, while
others carry out the computation using the black hole.

One may object that black holes disappearance is not acceptable. The un-
derlying space being one-dimensional, any remaining black hole would form a
barrier preventing information to cross from one side to the other; in two and
more dimension, it is alway possible to go around it. Another argument is to
imagine that signals are drifting in a higher dimensional space, so that the black
holes remain, but its orbit is not in the plane of the space-time diagram.

Reversibility is an important issue in theoretical physics. One can easily
check that reversibility corresponds to R being one-to-one. At the expense of
more complex constructions, universality can be achieved as well as the use of
accumulations as black holes. But the final collapsing is not reversible.

The number of possible black holes / R.E . queries is bounded from the start
(each needs a minimal amount of energy). Unless the black hole returns the en-
ergy in some form, which is clearly forbidden here, there is no way to address
second order accumulations (i.e. ω2 or second order space-time arithmetic de-
ciding or Σ0

2 in the arithmetical hierarchy), unless infinitely many signals exist
at start, apart one from another. This way it would be reasonably possible to
hope to climb the arithmetical hierarchy as in [AM95, Bou99].

As long as the model is restricted to rationals, there are finitely many sig-
nals present at any instant and there is no accumulation, the model is Turing-
universal and can be simulated by any Turing machine and is thus Turing-
equivalent. Real values for speeds and/or positions can be used as oracles and
thus provide computing ability that goes beyond Turing-computation.

Abstract Geometrical Computation for Black Hole Computation 187

References

[Ada02] A. Adamatzky, editor. Collision based computing. Springer, 2002.
[AM95] E. Asarin and O. Maler. Achilles and the Tortoise climbing up the arith-

metical hierarchy. In FSTTCS ’95, number 1026 in LNCS, pp. 471–483,
1995.

[BNR91] N. Boccara, J. Nasser, and M. Roger. Particle-like structures and interac-
tions in spatio-temporal patterns generated by one-dimensional determinis-
tic cellular automaton rules. Phys. Rev. A, 44(2):866–875, 1991.

[Bou99] O. Bournez. Achilles and the Tortoise climbing up the hyper-arithmetical
hierarchy. Theoret. Comp. Sci., 210(1):21–71, 1999.

[DL97] J. Durand-Lose. Intrinsic universality of a 1-dimensional reversible cellular
automaton. In STACS ’97, number 1200 in LNCS, pp. 439–450. Springer,
1997.

[DL03] J. Durand-Lose. Calculer géométriquement sur le plan – machines à signaux.
Habilitation à diriger des recherches, École Doctorale STIC, Université de
Nice-Sophia Antipolis, 2003. In French.

[DL04] J. Durand-Lose. Abstract geometrical computation: Turing-computing abil-
ity and unpredictable accumulations (extended abstract). Technical Report
2004–09, LIP, ÉNS Lyon, 46 allée d’Italie, 69 364 Lyon 7, 2004.

[DM02] M. Delorme and J. Mazoyer. Signals on cellular automata. in [Ada02], pp.
234–275, 2002.

[EN02] G. Etesi and I. Nemeti. Non-Turing computations via Malament-Hogarth
space-times. Int. J. Theor. Phys., 41(2):341–370, 2002. gr-qc/0104023.

[Fis65] P. C. Fischer. Generation of primes by a one-dimensional real-time iterative
array. J. ACM, 12(3):388–394, 1965.

[Ham02] J. D. Hamkins. Infinite time Turing machines: Supertask computation.
Minds and Machines, 12(4):521–539, 2002. math.LO/0212047.

[Hog94] M. Hogarth. Non-Turing computers and non-Turing computability. In
Biennial Meeting of the Philosophy of Science Association, number 1, pp.
126–138, 1994.

[Hog00] M. Hogarth. Predictability, computability and space-time. PhD thesis,
University of Cambridge, UK, 2000. ftp://ftp.math-inst.hu/pub/algebraic-
logic/Hogarththesis.ps.gz.

[HSC01] W. Hordijk, C. R. Shalizi, and J. P. Crutchfield. An upper bound on the
products of particle interactions in cellular automata. Phys. D, 154:240–258,
2001.

[Ila01] A. Ilachinski. Cellular Automata –A Discrete Universe–. World Scientific,
2001.

[JS90] G. Jacopini and G. Sontacchi. Reversible parallel computation: an evolving
space-model. Theoret. Comp. Sci., 73(1):1–46, 1990.

[Maz96] J. Mazoyer. On optimal solutions to the Firing squad synchronization prob-
lem. Theoret. Comp. Sci., 168(2):367–404, 1996.

[Min67] M. Minsky. Finite and Infinite Machines. Prentice Hall, 1967.
[MT99] J. Mazoyer and V. Terrier. Signals in one-dimensional cellular automata.

Theoret. Comp. Sci., 217(1):53–80, 1999.
[VMP70] V. I. Varshavsky, V. B. Marakhovsky, and V. A. Peschansky. Synchroniza-

tion of interacting automata. Math. System Theory, 4(3):212–230, 1970.

Is Bosco’s Rule Universal?

Kellie Michele Evans

California State University, Northridge, CA 91330-8313, USA
kellie.m.evans@csun.edu,

WWW companion page to paper:
http://www.csun.edu/∼kme52026/bosco/bosco.html

Abstract. The Game of Life (Life) is a two-state, two-dimensional,
nearest neighbor cellular automaton (CA), which John Horton Conway
proved is universal. The Larger than Life (LtL) family of CAs generalizes
Life to large neighborhoods and general birth and survival thresholds. A
specific threshold-range scaling of Life to LtL yields Bosco’s rule, which
is a range 5 CA with dynamics similar to Life. In the 1990s Conway
challenged us to prove that rules such as Bosco’s are, like Life, universal.
Here we show that Bosco’s rule supports patterns such as those used
in the proof that Life is universal. Specifically, we build a sliding block
memory, similar to the auxiliary storage device Conway described and
claimed could be built. Our construction is based on Life’s sliding block
memory designed and built by Dean Hickerson in 1990. In a companion
paper we explore various questions which have arisen since Conway posed
his challenge, including whether the details given in his proof that Life
is universal are sufficient and what necessary and sufficient conditions
are required to prove that Bosco’s rule, or any two-dimensional CA, is
universal.

Keywords: bugs, cellular automata, gliders, Game of Life, Larger than
Life, register, sliding block memory, spaceships, universal

1 Introduction

As is well known, in the late 1960s John Horton Conway wanted to find a cellular
automaton (CA) with a simple update rule capable of universal computation. His
quest to find such a rule was successful and the rule, which he named the Game
of Life (Life) was so intriguing it generated international interest in CAs [1].
New Life patterns continue today to be discovered and posted online and new
Life questions and results emerge regularly [2].

To prove that Life is universal, Conway showed how to define Life patterns
that can imitate computers. That is, he showed that Life’s patterns can be
configured spatially to create glider guns as well as AND, OR, and NOT logical
gates. He also described an auxiliary storage device, capable of holding arbitrarily
large numbers [3]. His design will be discussed further in Section 3.

In the early 1990s, David Griffeath generalized Life to Larger than Life (LtL),
which is a family of CAs with large neighborhoods and general birth and survival

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 188–199, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Is Bosco’s Rule Universal? 189

thresholds [4]. Studying LtL has led to numerous results and open questions
about large-range cellular automata [5], [6]. In particular, a specific threshold-
range scaling of Life to LtL yields a family of “Life-like” rules for each range, or
neighborhood size. Our favorite such example is Bosco’s rule, which is a range
5 CA (meaning the rule’s neighborhood is an 11× 11 box).

In 1994 we showed several of these Life-like LtL rules to Conway and he
challenged us to prove that some of them (which he called “interval rules”) are
universal. In this paper we show that Bosco’s rule supports patterns such as
those Conway used to prove that Life is universal. Specifically, we build a sliding
block memory, similar to the auxiliary storage device he described and claimed
could be built. Our construction is based on Life’s sliding block memory designed
and built by Dean Hickerson in 1990 [7].

The constructions we present in this paper would have been nearly impossible
to build when Conway posed his challenge due to the large sizes of the lattices
required and the consequential slowness of running such systems on a standard
computer. (We had access to a Cellular Automata Machine (CAM), which was
lightning fast for its day, however, creating detailed initial states on the CAM
was not efficient.) This work is now possible because clock speeds on personal
computers have increased dramatically and Mirek’s Celebration (or MCell), a
CA modeling environment, which allows one to create detailed initial states on
the fly, has come into existence (MCell is freeware available for download at [8]).
In addition, this project needed input from Hickerson, the Life expert mentioned
above.

2 Bosco’s Rule: Definitions and Notation

Let us define Bosco’s rule. Each site of the two-dimensional lattice Z2 is in
one of two states, live (1) or dead (0). This is the initial configuration of the
system. The neighborhood N5 of a site consists of the 11 × 11 sites in the box
surrounding and including it. That is, the neighborhood of the origin is N5 =
{y ∈ Z2 : ||y||∞ ≤ 5}, so that its translate N x

5 = x + N5 is the neighborhood
of site x ∈ Z2. N5 is called the range 5 box neighborhood. Each time step, all of
the sites update (meaning change states or not) simultaneously according to the
deterministic LtL rule, which in words is:
• Birth: A site that is dead at time t will become live at time t + 1 if and

only if the number of live sites in its neighborhood at time t is in the closed
interval [34, 45].
• Survival: A site that is live at time t will remain live at time t + 1 if and

only if the number of live sites in its neighborhood (itself included) at time t is
in the closed interval [34, 58].
• Death: In all other cases a site remains or becomes dead.
Let us introduce the notation needed for the definitions that follow.
Let T denote Bosco’s rule. That is, T : {0, 1}Z2 $−→ {0, 1}Z2

. Let ξt(x) ∈
{0, 1} denote the state of the site x ∈ Z2 at time t and let ξt represent the state
of all sites in Z2 at time t. As is customary we will often think of the CA as a

190 K.M. Evans

set-valued process, confounding ξt with {x : ξt(x) = 1}. For example, this allows
us to use the notation ξΛ

t = T t(Λ) to mean that starting from configuration
ξ0 = Λ we arrive at the set T t(Λ) of occupied sites after t iterations of rule T .

Bosco’s rule is just one of the numerous range 5 LtL CA rules, which form a
four-parameter family indexed by the endpoints β1 and β2 of the birth intervals
and the endpoints δ1 and δ2 of the survival intervals and denoted by the 5-tuple
(5, β1, β2, δ1, δ2). Bosco’s rule is denoted by (5, 34, 45, 34, 58). Similarly, Life is
one of the numerous range 1 LtL rules and is denoted by (1, 3, 3, 3, 4).

Next we present definitions which are needed for the sliding block memory.
These definitions for the most part conform to Life’s definitions defined in the
Life Lexicon [10]. The terminology in the remaining part of the paper also con-
forms to that used by the group of researchers devoted to the study of Life. For
instance, this is where such terminology as “bug gun,” “salvo of bugs,” “shot-
gun,” and so on originated.

Definition 1. A still life is a configuration Λ which is a fixed point for T . That
is, T (Λ) = Λ.

Example 1 Life’s block is a 2× 2 configuration of live sites that remains fixed
as the rule updates. Similarly, Bosco’s rule has a block, which is a fixed 6 ×
6 configuration of live sites. We have generalized the block to LtL rules with
arbitrarily large ranges [6].

The block is the static piece used in the sliding block memory to store a
register’s value. It is used because it is a very commonly occurring still life;
other shapes could also have been used.

Definition 2. An oscillator or periodic object is a finite configuration Λ for
which there exists a positive integer n so that T n(Λ) = Λ. The smallest such n
is called the period of Λ.

Example 2 Bosco is the period 166 oscillator for which the rule is named (see
A.mcl1). Bosco’s trajectory is depicted in Figure 1: starting at time 0, moving
northeast along the diagonal to the phase depicted at time 25 and then turning
around at time 50 to move southwest along the diagonal. Observe that Bosco’s
phases at times 83 and 108 are rotated translations of those that are depicted at
times 0 and 25, respectively. At time 133, a rotated translation of Bosco’s time
50 turn would appear, but depicted instead is time 137, which is Bosco along
with the spark (see Figure 2). At time 166 Bosco is back to the starting position.

Definition 3. A spark is a pattern that dies. The term is typically used to
describe a collection of cells periodically thrown off by an oscillator or bug [10].

1 In the companion website [9], java applets which illustrate the constructions may be
viewed in real-time. Here and after, references to these applets will be denoted by
*.mcl. See the website for a more complete description of the applets.

Is Bosco’s Rule Universal? 191

108

137

83

25
50

0

Fig. 1. Times 0, 25, 50, 83, 108, and 137 of Bosco’s trajectory (A.mcl).

spark

Fig. 2. The large arrow is pointing to Bosco’s spark, which appears northwest
of Bosco. The two adjacent cells closer to Bosco are also part of the spark.

A spark is useful for obvious reasons: it may interact with other live sites
without affecting the oscillator that generates it. Bosco’s spark is located quite
a distance away, which is key to the numerous reactions needed for the sliding
block memory.

Definition 4. A bug is a finite configuration Λ for which there exists a finite
time, τ , and a nonzero displacement vector, d = (d1, d2), such that T τ (Λ) =
Λ + d. The smallest such τ is a bug’s period, mod translation, in the direction
of d.

Definition 5. The speed of a bug is max(|d1|, |d2|)/τ .

LtL’s bugs are generalizations of Life’s famous spaceships. They are charac-
terized according to their trajectories and their speeds. The two bug types used
in the construction of the sliding block memory are speed 5/6 orthogonal bugs,
which have displacement vectors d = (5, 0) and period τ = 6, so they move 5
cells every 6 time steps, and speed 8/16 diagonal bugs, which have displacement
vectors d = (8, 8) and period τ = 16, so they move in the diagonal direction 8
cells every 16 time steps. Other bug varieties are defined in [6].

Example 3 Bosco’s rule supports bugs of varying shapes and speeds. In Figure 3
we illustrate the trajectory of a speed 5/6 orthogonal bug, which is the most
crucial part of the sliding block memory. For additional examples, see B.mcl.

Another crucial ingredient in the sliding block memory is the tripling reaction,
in which Bosco turns a speed 5/6 orthogonal bug 90 degrees and creates another
copy of Bosco as well as a speed 8/16 diagonal bug in the process (Figure 4 and
C.mcl). The additional Bosco and diagonal bug can then be turned into speed
5/6 orthogonal bugs, hence the reaction’s name.

192 K.M. Evans

0 19 38 57 76 95

Fig. 3. Times 0, 19, 38, 57, 76, and 95 of the trajectory of a speed 5/6 orthogonal
bug are depicted. These specific times were selected so that each of the bug’s 6
phases may be viewed without overlap.

Bosco
speed 5/6 bug

T=0

new copy of Bosco

speed 5/6 orthogonal bug

speed 8/16 diagonal bug

original Bosco

T=50

Fig. 4. Time 0 on the left shows Bosco and a speed 5/6 orthogonal bug heading
north. After 50 time steps, which is depicted on the right, a figure, which will
become a speed 5/6 bug turned 90 degrees from the original, appears along with
figures that will become a new copy of Bosco and a period 16 diagonal bug,
respectively (C.mcl).

In order to prove that Life is universal, Conway needed first to show that a
finite population of live sites could generate an infinite population. This chal-
lenge was posed in Martin Gardner’s Mathematical Games column in Scientific
American in 1970 [1]. William Gosper won the fifty dollar prize attached to the
challenge when he constructed Life’s first glider gun (Gosper.mcl). Similarly, we
needed bug guns for Bosco’s rule and Hickerson led the way by constructing the
first one which, like Bosco, has period 166 (D.mcl). Due to space-time consider-
ations, the sliding block memory has period 332. We thus had to build special
period 332 guns like the one depicted in Figure 5. The gun works as follows:
Two copies of Bosco, denoted by Bi and Bii create one speed 5/6 orthogonal
bug every 166 time steps. One such bug is depicted in the figure and denoted by
bi. Meanwhile, two more copies of Bosco, denoted by Biii and Biv form a stable
block every 166 time steps. When bi collides with the block, bi is turned 180
degrees and crashes into the next bug, bii, created by Bi and Bii. Both bugs are
annihilated in the process. The next block formed by Biii and Biv thus remains
fixed until the Bosco denoted by Bv transforms it into a speed 5/6 orthogo-

Is Bosco’s Rule Universal? 193

nal bug. One such bug, bv is depicted. This occurs once every 332 time steps,
resulting in a period 332 gun (E.mcl).

Bi

Bii
Biv

Bv

Biii

b i
bvb

ii

Fig. 5. Period 332 bug gun (E.mcl).

In addition to the standard period 332 gun, we also needed guns whose out-
puts are turned 90 degrees and/or shifted. Through extensive experimentation
we found that strategically placed copies of Bosco can turn, shift, and adjust
the phase of a speed 5/6 bug. Thus, by adding appropriately placed Boscos, we
were able to construct the required guns (eg. F.mcl).

3 Bosco’s Sliding Block Memory

In the auxiliary storage device designed by Conway and mentioned in the intro-
duction, each register contains a block (see Example 1), whose distance from the
computer (on a certain scale) indicates the number the register contains. Salvos
of gliders are used to push a block (increase the contents of a register by 1) or
pull a block (decrease the contents of a register by 1). Another glider is used to
test whether a register’s contents are 0. Conway found a salvo of 2 gliders that
could pull a block a diagonal distance of 3 and a salvo of 30 gliders that could
push a block a diagonal distance of 3. A diagonal distance of 3 is thus used to
represent a change of 1 in a register. Conway argued that his design was sufficient
to prove that Life is universal since Minsky has shown that a finite computer
with two such memory registers is sufficient to simulate a universal Turing ma-
chine [3], [11]. In 1990 Hickerson designed and built Life’s Sliding Block Memory
(SBM), which simplifies the design described by Conway [7].

We used Conway’s idea for a register and the simplifications made by Hick-
erson to build an SBM for Bosco’s rule. We found a 5-bug salvo that pushes a
block 10 units and a 6-bug salvo that pulls a block 10 units. Thus, a horizontal
distance of 10 represents a change of 1 in a register. All of the bugs in the push
and pull salvos are speed 5/6 so that the distance representing a change of 1
in a register must be a multiple of 5. A distance of 10 was chosen since it is
the smallest multiple of 5 for which all of the moving parts of the SBM would
interact synergistically without destroying one another.

194 K.M. Evans

Bosco’s SBM consists of a shotgun which produces every 332 time steps an
11-bug salvo containing both the push and pull salvos. There is a control device
which releases the push and pull salvos when instructed to do so by external
circuitry. There is also a test for zero, which automatically reports when a block
is pulled from 1 to 0. Let us describe the parts of the SBM in detail.

The 6-bug pull salvo is depicted in Figure 6 and works as follows: A block
begins in position (0, 0). Bug b1 shifts it to (−20, 1) by time 57; b2 then shifts it to
(−16,−12) by time 86; b3 shifts it to (−13,−6) by time 112, while b4 annihilates
the debris created in the reaction, by time 126. Bug b5 then shifts it to (−10, 0)
by time 208 while b6 cleans up the debris and at time 222 all that remains is the
block, which has been pulled 10 units (G.mcl).

b3
b2

b1b4
b5b6

Fig. 6. A 6-bug salvo pulls a block 10 units (G.mcl).

The 5-bug push salvo is depicted in Figure 7 and works as follows: A block
begins in position (0, 0). Bug b7 transforms it into a still life by time 108, which
b8 transforms into two blocks by time 183, one of which is in position (44, 0).
The other, which is in position (35, 48), is annihilated when b10 collides with
it. Meanwhile b9 shifts the other block to position (27, 5) by time 246. Bug b11
then shifts the block to (10, 0) by time 320. At time 327 debris created during
the reaction has died and all that remains is a block, pushed 10 units from its
original location (H.mcl).

b8 b7b9

b10

b11

Fig. 7. A 5-bug salvo pushes a block 10 units (H.mcl).

Of course, numerous salvos of bugs can be positioned to push and pull the
block various distances; however, in the other more efficient cases we tried, the
test for zero, which we describe next, failed.

Is Bosco’s Rule Universal? 195

To test whether a register is 0, Conway designed a test which destroyed the
block and then had to rebuild it. Hickerson designed a simpler test for Life’s
SBM, which does not destroy the block in the process; instead whenever the
block is pulled from 1 to 0, this transition is reported to the computer. Our
test for zero is like Hickerson’s. It is depicted in Figure 8 and works as follows:
Every 332 time steps, a bug is fired from the gun denoted by Gzerodetector. If the
block is pulled from position from 1 to 0, this bug is annihilated in the process,
without harming the block. Otherwise, the bug moves south unharmed (I.mcl).

blockpush or pull salvo

Gzero detector

Fig. 8. The test for zero automatically reports when the block is pulled from 1
to 0.

A sketch of the shotgun is depicted in Figure 9 and the 11-bug salvo which it
creates is in Figure 10. The shotgun consists of 3 p166 guns, denoted by g3, g4,
and g5 which create bugs b3, b4, and b5. Meanwhile, gun G annihilates all 3 bugs
every 332 time steps, resulting in the 3 bugs being created once every 332 time
steps. Two more period 332 guns, denoted by G11 and G2 (which include bug
shifting reactions and a ninety degree turn so the new bugs do not collide with
those already created) are located south and further east and create 2 more of
the salvo’s bugs, b11 and b2, respectively. One more such gun, G1 appears even
further east and five more such guns G6, G9, G8, G7, and G10 appear to the
northeast and they produce the remaining 6 bugs of the salvo, b1, b6, b9, b8, b7,
and b10, respectively. All bugs fall into formation to head east (J.mcl).

g
5

g
4

g
3

G
G11 G2

G1

G6
G9

G8 G7
G10

Fig. 9. Shotgun for Bosco’s SBM: creates the 11-bug salvo depicted in Figure 10.

Since the push and pull salvos are created together by the shotgun, one, the
other, or both must be suppressed so that the block is either pushed (if only the

196 K.M. Evans

b3
b2

b1b4
b5b6

b8 b7b9

b10

b11

Fig. 10. Salvo created by the shotgun depicted in Figure 9. This 11-bug salvo
is a disjoint union of the push and pull salvos depicted in Figures 6 and 7.

pull is suppressed), pulled (if only the push is suppressed), or neither (if both
are suppressed). Push (or increment) and pull (or decrement) suppressors were
designed for this job, both consist of 3 period 332 guns. The following describes
how the push suppressor works.

The push suppressor is depicted in Figure 11 and works as follows: Three
guns, GA, GB, and GC send “suppressor” signal bugs A, B, and C toward the
11-bug salvo. Bug A collides with b11 causing both to vanish. Bug B collides
with b8 to form a block which remains fixed until b9 crashes into it resulting in
the annihilation of both. Bug C collides with b7 to create a period 16 diagonal
bug heading northwest, which collides with b10 and both are annihilated in the
process. All 5 bugs, bi, i = 7, 8, 9, 10, and 11 of the push salvo are thus annihilated
by the output of the three guns, while the 6 bugs of the pull salvo remain
unchanged (K.mcl).

The pull suppressor is depicted in Figure 12 and works as follows: Three guns,
GD, GE , and GF send “suppressor” signal bugs D, E, and F toward the 11-bug
salvo. Bug D collides with b5, causing a reaction that results in the annihilation
of D, b5, and b6. Bug E collides with b2 and both bugs are annihilated. Bug
F turns b1 into a block which remains fixed until b3 crashes into it, causing a
reaction that annihilates b3 and b4. All 6 bugs, bi, i = 1− 6 of the pull salvo are
thus annihilated by the output of the three guns, while the 5 bugs of the push
salvo remain unchanged (L.mcl).

An external signal is used to indicate whether the block is to be pushed or
pulled. If no such signal is sent, the block remains fixed. A push is signaled by
annihilating the three bugs from the push suppressor. A control device is needed
to do this. The push suppressor and control device are depicted in Figure 11
and work as follows: Together guns GA, GB, and GC suppress the push salvo.
Meanwhile, a control device, consisting of three copies of Bosco, B1, B2, and
B3 wait for an external input, which is a speed 5/6 orthogonal bug, denoted by
bpush that will signal a push as follows: bpush goes into Bosco’s tripling reaction,
denoted by B1, the output of which are bugs bB and bC (after an additional copy
of Bosco, denoted by B2 transforms the tripling reaction’s period 16 diagonal
bug into bC and another copy of Bosco, B3 annihilates the tripling reaction’s

Is Bosco’s Rule Universal? 197

unwanted copy of Bosco). Bug bB annihilates the bugs from guns A and B and
bug BC annihilates the bug from gun C. The result is that a push salvo survives
(M.mcl).

B

b

1

B3

B2

push

bB

bC

GA

GB
GC

Fig. 11. Push suppressor, GA, GB , and GC , along with control device B1, B2,
and B3, that waits for an external push signal, bpush (M.mcl).

Similarly, a pull is signaled by annihilating the three bugs from the pull sup-
pressor. The pull suppressor and required control device are depicted in Figure 12
and work as follows: Together guns GD, GE , and GF suppress the pull salvo.
Meanwhile, the control device, consisting of nine copies of Bosco, B4−B12 wait
for an external input, which is a speed 5/6 orthogonal bug, denoted by bpull, that
signals a pull as follows: bpull goes into Bosco’s tripling reaction, denoted by B4,
the output of which are bugs bD, bE , and bF (after the three copies of Bosco
denoted by B5, B6, and B7 transform B4’s period 16 diagonal bug output into
bD, Boscos B8, B9, and B10 transform B4’s Bosco output into bF , and Boscos
B11 and B12 shift B4’s speed 5/6 orthogonal bug output so that it is in BE ’s
position. Note that the placement of the Boscos is crucial since all 9 of them
must do their individual jobs without interacting with one another or any of the
other moving parts of the pull signal). Bug bD annihilates the bug from gun D,
bug bE annihilates the bug from gun E, and bug bF annihilates the bug from
gun F . The result is that a pull salvo survives (N.mcl).

In order to test Bosco’s SBM, we created an experiment that includes an
external circuit, consisting of four copies of Bosco, denoted by B13 − B16, one
period 332 gun, denoted by Gpushsignal , and one period 4980 gun, denoted by
Gp4980. This system test also includes the shotgun, push and pull suppressors
and their control devices, as well as the test for zero. It is depicted in Figure 13
and works as follows: The gun, Gzerodetector , outputs one bug every 332 time
steps. If the block is not pulled from 1 to 0, Boscos B13, B14, and B15 turn this
bug 90 degrees each, as denoted by the arrows, and so that it annihilates the
bug from the period 332 gun Gpushsignal which, if not stopped would signal a
push as described above. If the block is pulled from 1 to 0, the output bug from
Gzerodetector is instead annihilated and thus a push signal arrives 4648 time steps

198 K.M. Evans

B

b

4

B5pull
bD

GD
GE

GF

bE

bFB11

B12

B8

B9 B10

B6
B7

Fig. 12. Pull suppressor, GD, GE , and GF , along with control device B4 −B12

that waits for an external pull signal, bpull (N.mcl).

Gp4980

Gpush signal

Gzero detector

B13B14
B16

B15

shotgun block

B1

B3

B2

bB

bC

GA

GB
GC

B4
B5

bD

GD
GE

GF

bE

bFB11
B12

B8

B9 B10

B6
B7

Fig. 13. SBM system test (O.mcl).

later (the time length is a consequence of the particular spatial configuration).
Meanwhile, the gun Gp4980 outputs one bug every 4980 time steps and the Bosco
denoted by B16 turns this bug 90 degrees so that it becomes a pull signal every
4980 generations. In the experiment (O.mcl), a block begins in position 1. It is
pushed (10 cells to the right) and then pulled (10 cells to the left). After that,
nothing happens until the first bug from Gp4980 arrives and signals a pull. This
pulls the block from 1 to 0 so that one bug from gun Gzerodetector is annihilated
and 4648 time steps later a push is signaled. This pattern repeats, so that the
block is pulled to 0 and then pushed to 1, ad infinitum.

Is Bosco’s Rule Universal? 199

4 Conclusion

We have shown that Bosco’s rule supports various constructions, including the
sliding block memory, which is a register that can store any nonnegative integer.
The SBM has three basic operations: increment, decrement, and test for zero.
Minsky has shown that just 2 such registers suffice to simulate a universal Turing
machine [11].

In a companion paper we describe LtL rules similar to Bosco’s (from various
ranges) which are candidates for universality. We explore questions which have
arisen since Conway challenged us to do these constructions, including whether
the details given in his proof that Life is universal are sufficient and what nec-
essary and sufficient conditions are required to prove that Bosco’s rule, or any
two-dimensional cellular automaton, is universal. For instance, is it necessary
to explicitly construct all reactions and a sliding block memory (or something
equivalent)? Is it necessary to build a Universal Minsky Register Machine (or
something equivalent), like the one Paul Chapman built for Life? [12] Or is there
a set of axioms one can state that ensures that a rule which satisfies the axioms
is universal? If so, what is the smallest set of axioms?

5 Acknowledgements

Thanks to: Dean Hickerson for his interest in Bosco’s rule, insights, contributions,
and feedback; David Griffeath and Cris Moore for organizing the New Construc-
tions in Cellular Automata conference at the Santa Fe Institute in 1998; Joan
Wheeler for editorial assistance; and Carl Addicott for perspective.

References

1. Gardner, M.: Mathematical games–the fantastic combinations of John Conway’s
new solitaire game, Life, Sci. Am. 223 (1970) 120–123

2. Summers, J.: Game of Life status page, entropymine.com/jason/life/status.html
3. Berlekamp, E., Conway, J., Guy, R.: What is Life? in: Winning Ways for Your

Mathematical Plays, vol. 2, Academic Press, New York, 1982, Chapter 25
4. Griffeath, D.: Self-organization of random cellular automata: four snapshots, in:

Probability and Phase Transitions, D. Griffeath, 1994, (G. Grimmett Ed.), Kluwer
Academic, Dordrecht/Norwell, MA

5. Evans, K.: Larger than Life: it’s so nonlinear, Ph.D. dissertation, University of
Wisconsin - Madison, 1996, http://www.csun.edu/∼kme52026/thesis.html

6. Evans, K.: Threshold-range scaling of Life’s coherent structures, Physica D 183
(2003) 45-67

7. Hickerson, D.: Description of sliding block memory, 1990,
http://www.radicaleye.com/lifepage/patterns/sbm/sbm.html

8. Griffeath, D.: Primordial Soup Kitchen, http://psoup.math.wisc.edu/kitchen.html
9. Evans, K.: http://www.csun.edu/∼kme52026/bosco/bosco.html
10. Silver, S.: Life Lexicon Home Page, www.argentum.freeserve.co.uk/lex home.htm
11. Minsky, M.: Computation: Finite and Infinite Machines, Pren. Hall, 1967, Sec. 15.1
12. Chapman, P.: Life Universal Computer, 2002, http://www.igblan.free-

online.co.uk/igblan/ca/

Sequential P Systems with Unit Rules

and Energy Assigned to Membranes

Rudolf Freund1, Alberto Leporati2, Marion Oswald1, and Claudio Zandron2

1 Faculty of Informatics, Vienna University of Technology
{rudi,marion}@emcc.at

2 Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano - Bicocca
{leporati,zandron}@disco.unimib.it

Abstract. We introduce a new variant of membrane systems where the
rules are directly assigned to membranes (and not to the regions as this is
usually observed in the area of membrane systems) and, moreover, every
membrane carries an energy value that can be changed during a com-
putation by objects passing through the membrane. For the application
of rules leading from one configuration of the system to the succeeding
configuration we consider a sequential derivation mode and do not use
the mode of maximal parallelism. The result of a successful computation
is considered to be the distribution of energy values carried by the mem-
branes. We show that for such systems using a kind of priority relation
on the rules we already obtain universal computational power. When
omitting the priority relation, we obtain a characterization of the family
of Parikh sets generated by context-free matrix grammars (with λ-rules).

Keywords: computational completeness, matrix grammars, membrane comput-
ing, P systems

1 Introduction

In 1998 Gheorghe Păun introduced membrane systems (in [12]) as distributed
and parallel computing devices that were abstracted from the biological func-
tioning of living cells. For motivations and examples as well as for further details
we refer to [13]; for actual developments in the area of P systems see [17].

Considering the energy balancing of processes in a cell first was investigated
in [14] and then in [4]. There the energies of all rules to be used in a given step
in a membrane are summed up; if the total amount of energies is positive ([14])
or within a given range ([4]), then this multiset of rules can be applied if it is
maximal with this property.

We here take another approach. In contrast to most models of P systems
where the evolution rules are placed within a region, in this paper we consider
membrane systems where the rules are directly assigned to the membranes (as
already done in [7]) and have to be applied in a sequential way (for sequential

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 200–210, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Sequential P Systems with Unit Rules and Energy Assigned to Membranes 201

variants of P systems see, for example, [2] and [3]). Moreover, each membrane
carries an energy value. As long as the energy value of a membrane is non-
negative, by a rule application, singleton objects can be rewritten while passing
through membranes, thereby consuming or producing energy that is added to or
subtracted from the energy value of the respective membrane. We also consider
a kind of priority relation on the rules assigned to the membranes by choosing
the one first that changes the energy value of the membrane under consideration
in a maximal way. The result of a successful computation is stored in the final
energy values of the membranes.

In the following section we first give some preliminary definitions and recall
some notions and results for register machines and matrix grammars, the com-
putation models we use for proving the results elaborated in this paper; then
we introduce P systems with unit rules and energy assigned to membranes. In
the third section we show that when using a kind of priority among the rules,
the introduced systems can simulate register machines quite easily, which proves
their computational completeness. A characterization of PsMAT λ is obtained
when omitting the priority relation.

2 Definitions

The set of non-negative integers is denoted by N. An alphabet V is a finite non-
empty set of abstract symbols. Given V , the free monoid generated by V under
the operation of concatenation is denoted by V ∗; the empty string is denoted by
λ, and V ∗ − {λ} is denoted by V +. By | x | we denote the length of the word x
over V.

Let {a1, ..., an} be an arbitrary alphabet; the number of occurrences of a
symbol ai in x is denoted by | x |ai ; the Parikh vector associated with x with
respect to a1, ..., an is (| x |a1 , ..., | x |an) . The Parikh image of a language L
over {a1, ..., an} is the set of all Parikh vectors of strings in L. For a family
of languages FL, the family of Parikh images of languages in FL is denoted
by PsFL. A (finite) multiset 〈m1, a1〉 ... 〈mn, an〉 with mi ∈ N, 1 ≤ i ≤ n, is
represented as any string x the Parikh vector of which with respect to a1, ..., an

is (m1, ...,mn) .
The family of recursively enumerable languages is denoted by RE, the family

of context-free languages by CF. For more details on formal language theory we
refer to [16] as well as to [13].

2.1 Register Machines

A deterministic register machine is a construct M = (m,R, l0, lh), where m is
the number of registers, R is a finite set of instructions injectively labelled with
elements from a given set lab(M), l0 is the initial/start label, and lh is the final
label.

202 R. Freund et al.

The instructions are of the following forms:

– l1 : (ADD(r), l2)
Add 1 to the contents of register r and proceed to the instruction (labelled
with) l2. (We say that we have an add-instruction.)

– l1 : (SUB(r), l2, l3)
If register r is not empty, then subtract 1 from its contents and go to in-
struction l2, otherwise proceed to instruction l3. (We say that we have a
subtract-instruction.)

– lh : Halt
Stop the machine. The final label lh is only assigned to this instruction.

The results proved in [6] (based on the results established in [11]) as well as
in [8] and [9] immediately lead to the following result:

Proposition 1. For any partial recursive function f : Nα → Nβ there exists
a deterministic (max{α, β}+ 2)-register machine M computing f in such a way
that, when starting with (n1, ..., nα) ∈ Nα in registers 1 to α, M has computed
f (n1, ..., nα) = (r1, ..., rβ) if it halts in the final label h with registers 1 to β
containing r1 to rβ , and all other registers being empty; if the final label cannot
be reached, f (n1, ..., nα) remains undefined.

2.2 Matrix Grammars

A context-free matrix grammar (without appearance checking) is a construct
G = (N,T, S,M) where N and T are sets of non-terminal and terminal symbols,
respectively, with N ∩ T = ∅, S ∈ N is the start symbol, M is a finite set of
matrices, M = {mi | 1 ≤ i ≤ n}, where the matrices mi are sequences of the form
mi = (mi,1, . . . ,mi,ni), ni ≥ 1, 1 ≤ i ≤ n, and the mi,j , 1 ≤ j ≤ ni, 1 ≤ i ≤ n,
are context-free productions over (N,T). For mi = (mi,1, . . . ,mi,ni) and v, w ∈
(N ∪ T)∗ we define v =⇒mi w if and only if there are w0, w1, . . . , wni ∈ (N ∪ T)∗

such that w0 = v, wni = w, and for each j, 1 ≤ j ≤ ni, wj is the result of the
application of mi,j to wj−1. The language generated by G is

L (G) = {w ∈ T ∗ | S =⇒mi1
w1 . . . =⇒mik

wk, wk = w,

wj ∈ (N ∪ T)∗ , mij ∈M for 1 ≤ j ≤ k, k ≥ 1
}
.

According to the definitions given in [1], the last matrix can already finish
with a terminal word without having applied the whole sequence of productions.
The family of languages generated by matrix grammars without appearance
checking is denoted by MAT λ. It is known that PsCF ⊂ PsMAT λ ⊂ PsRE.
Further details about matrix grammars can be found in [1] and in [16].

2.3 P Systems with Unit Rules and Energy Assigned to Membranes

A P system with unit rules and energy assigned to membranes of degree d+ 1 is
a construct Π of the form

Π = (O,μ, e0, ..., ed, w0, ..., wd, R0, ..., Rd)

Sequential P Systems with Unit Rules and Energy Assigned to Membranes 203

where

– O is an alphabet of objects ;
– μ is a membrane structure (with the membranes labelled by numbers 0, ..., d

in a one-to-one manner);
– e0, ..., ed are the initial energy values assigned to the membranes 0, ..., d;
– w0, ..., wd are multisets over V associated with the regions 0, ..., d of μ;
– R0, ..., Rd are finite sets of unit rules associated with the membranes 0, ..., d,

which are of the form (α : a,Δe, b) where α ∈ {in, out}, a, b ∈ O, and |Δe|
is the amount of energy that - for Δe ≥ 0 - is added to or - for Δe < 0 - is
subtracted from ei (the energy assigned to membrane i) by the application
of the rule.

Instead of (α : a,Δe, b) ∈ Ri we will also write (αi : a,Δe, b) and then, instead
of R0, ..., Rd, specify only one set of rules R with

R := {(αi : a,Δe, b) | (α : a,Δe, b) ∈ Ri, 0 ≤ i ≤ d} .

Starting from the initial configuration, which consists of μ, e0, ..., ed, and
w0, ..., wd, the system passes from one configuration to another one by non-
deterministically choosing one rule from R and applying it in the following sense
(observe that here we consider a sequential mode for the application of only
one rule instead of applying rules in a maximally parallel way as it is often
required in P systems): applying (ini : a,Δe, b) means that an object a (being
in the membrane immediately outside of i) is changed into b while entering
membrane i thereby changing the energy value ei of membrane i by Δe. On the
other hand, the use of a rule (outi : a,Δe, b) changes object a into b while it
passes out from membrane i changing its energy value by Δe. Yet the rules are
only applicable if the amount ei of energy assigned to membrane i fulfills the
requirement ei + Δe ≥ 0; moreover, we use some sort of local priorities: if there
is more than one rule associated with membrane i which could be applied, then
one of the rules with max |Δe| has to be used.

A sequence of transitions is called a computation; it is successful if and only
if it halts. The result of a successful computation is considered to be the distri-
bution of energies among the membranes (a non-halting computation does not
produce a result). Observe that in this model we do not take into account the
environment.

3 Results

The following theorem establishes computational completeness for the new vari-
ant of sequential P systems introduced in this paper:

Theorem 1. Each partial recursive function f : Nα → Nβ can be computed
by a P system with unit rules and energy assigned to membranes with (at most)
max{α, β}+ 3 membranes.

204 R. Freund et al.

Proof. Consider a (deterministic) register machine M = (m,P, 1, n) with m
registers such that with the program P the function f is computed; the initial
instruction has the label 1 and the halting instruction has the label n. Observe
that according to the result stated in Proposition 1, m = max{α, β} + 2 is
enough.

The input values x1, ..., xα are expected to be in the first α registers and the
output values from f (x1, ..., xα) are expected to be in registers 1 to β at the
end of a successful computation. Moreover, without loss of generality, we may
assume that at the beginning of a computation all the registers except eventually
the registers 1 to α contain zero.

We construct the P system

Π = (O,μ, e0, ..., em, w0, ..., wm, R) ,
O = {pj , p̃j|1 ≤ j ≤ n, j ∈ Lab(M)} ,
μ = [0[1]1...[α]α...[m]m]0,
ei = xi for 1 ≤ i ≤ α,

0 for α + 1 ≤ i ≤ m,
w0 = p1,
wi = λ for 1 ≤ i ≤ m,
R = {(ini : pj, 1, p̃j), (outi : p̃j , 0, pk) | j : (ADD (i) , k) ∈ P}
∪ {(ini : pj, 0, p̃j), (outi : p̃j ,−1, pk), (outi : p̃j , 0, pl) |

j : (SUB (i) , k, l) ∈ P}.

The contents of register i, 1 ≤ i ≤ m, is represented by the energy value ei

of membrane i.
The set of rules R depends on the instructions of P ; in more detail, the

simulation works as follows:

1. Each add-instruction j : (ADD (i) , k, k) ∈ P, 1 ≤ i ≤ m, is simulated in two
steps by using the rules (ini : pj , 1, p̃j) and (outi : p̃j , 0, pk) .

2. Each conditional subtract-instruction j : (SUB (i) , k, l) ∈ P is simulated
in two steps by the rules (ini : pj , 0, p̃j) as well as (outi : p̃j ,−1, pk) or
(outi : p̃j , 0, pl) .
The condition of priority guarantees that (outi : p̃j ,−1, pk) is applied as long
as ei has a positive value. Only if in the current configuration ei = 0, i.e.,
register i is empty, the rule (outi : p̃j , 0, pl) can be used.

It follows from the description given above that after each simulation of an
instruction each energy value ei equals the contents of register i, 1 ≤ i ≤ m.
Hence, after having simulated the instruction Halt and halting the system by
just doing nothing with the halting symbol pn any more, the energy values
e1, .., em equal the output of the program P. The only object remaining within
the system is the final label pn in region 0.

On the other hand, when omitting the priority feature, we do not get systems
with universal computational power. Let PsPE∗(unit) denote the family of sets
of Parikh vectors generated by P systems with unit rules and energy assigned

Sequential P Systems with Unit Rules and Energy Assigned to Membranes 205

to membranes without priorities and with an arbitrary number of membranes.
The following two lemmas prove that PsPE∗(unit) = PsMAT λ, i.e., we get a
characterization of PsMAT λ by the new family PsPE∗(unit).

Lemma 1. PsPE∗(unit) ⊇ PsMAT λ

Proof. Let G = (N,T, S,M) be a matrix grammar with λ-rules with every
matrix being of the form mi = (mi,1, . . . ,mi,ni), 1 ≤ i ≤ n, where mi,j = Ai,j →
wi,j,1....wi,j,ni,j . Without loss of generality, we may assume that ni,j ≤ 2. Then
we construct a P system Π with unit rules and energy assigned to membranes
that simulates G as follows:

We label the skin membrane by 0 and for all elements Bi in N ∪T we take a
membrane labelled by i, 1 ≤ i ≤ m, where m = card(N ∪ T) and m′ = card(T);
moreover, we define a bijective function index : {1, ...,m} → N ∪T such that the
terminal symbols have the indices 1 to m′ and the start symbol S has the label
m. Initially, every membrane has the energy value 0, i.e., ej = 0 for 0 ≤ j ≤ m.

Before starting the simulation of the matrices, we first have to add an addi-
tional step in order to get em = 1 as well as to have a non-deterministic choice
for mi by taking the rules (inm : p0, 1, p̃0) as well as (outm : p̃0, 0, pi,1,0) for every
i with 1 ≤ i ≤ n.

For the simulation of mi,j , 1 ≤ j ≤ ni,j , 1 ≤ i ≤ n, we have to take the
following rules:

1.
(
inindex(Ai,j) : pi,j,0, 0, p̃i,j,0

)
and

(
outindex(Ai,j) : p̃i,j,0,−1, αi,j

)
with

– αi,j ∈ {pk,1,0|1 ≤ k ≤ n} for wi,j = λ and j = ni,

– αi,j = pi,j+1,0 for wi,j = λ and j < ni,
– αi,j = pi,j,1 otherwise.

2.
(
inindex(wi,j,1) : pi,j,1, 1, p̃i,j,1

)
and

(
outindex(wi,j,1) : p̃i,j,1, 0, βi,j

)
with

– βi,j ∈ {pk,1,0|1 ≤ k ≤ n} for |wi,j | = 1 and j = ni,

– βi,j = pi,j+1,0 for |wi,j | = 1 and j < ni,
– βi,j = pi,j,2 for |wi,j | = 2.

3.
(
inindex(wi,j,2) : pi,j,2, 1, p̃i,j,2

)
and

(
outindex(wi,j,2) : p̃i,j,2, 0, γi,j

)
with

– γi,j ∈ {pk,1,0|1 ≤ k ≤ n} for j = ni,

– γi,j = pi,j+1,0 for j < ni.

At some moment during the simulation of a derivation in the matrix grammar
G by Π, we non-deterministically have to guess whether the current sentential
form is already terminal (in order to be able to halt the computation in Π); for
this purpose, we take the following rules:

1.
(
outindex(Ai,j) : p̃i,j,0, 0, pf

)
can always be applied directly after having ap-

plied
(
inindex(Ai,j) : pi,j,0, 0, p̃i,j,0

)
; it allows us to finish the computation

with the final object pf if the current sentential form is terminal (i.e., ej = 0
for m′ + 1 ≤ j ≤ m).

206 R. Freund et al.

2. (inj : pf ,−1, p̃f) and (outj : p̃f , 0,#) for m′ + 1 ≤ j ≤ m are used if the
current sentential form has not been terminal (which means ej �= 0 for some
j with m′+1 ≤ j ≤ m) when introducing pf ; in that case we ensure that the
system Π does not halt by entering an infinite loop with the trap symbol #
using the following rules:
(inm : #, 0,#) and (outm : #, 0,#) .

If pf cannot enter any of the membranes m′ + 1 ≤ j ≤ m this means that
no non-terminal symbol occurs any more in the current sentential form of the
simulated derivation in G, hence, it is correct to halt and thus to get the result
stored in the values of ej , 1 ≤ j ≤ m, which by construction represents the
corresponding result obtained by the simulated derivation in G.

Lemma 2. PsPE∗ (unit) ⊆ PsMAT λ

Proof. We first construct a matrix grammar which generates a suitable rep-
resentation of all configurations reachable from the initial configuration in Π.
Eliminating all non-final configurations from this set of reachable configurations
by intersection with a regular language we obtain the set of halting configura-
tions which immediately allows us to extract the terminal results by using a
projection. As the family of matrix languages is closed under intersection with
regular languages and projections (see [1]) this will prove the desired inclusion
PsPE∗ (unit) ⊆ PsMAT λ.

We first start the construction of a matrix grammar G = (V, T,M, S) gener-
ating the reachable configurations in Π for

Π = (O,μ, e0, ..., ed, w0, ..., wd, R)

being an arbitrary P system with unit rules and energy assigned to membranes
(arbitrary membrane structure, arbitrary number of membranes, arbitrary num-
ber of symbols). Taking D = {0, 1, ..., d} , we first define the mapping σ from the
set of all possible configurations of Π to

(O ×D)∗ {D0} {E0}∗ ... {Dd} {Ed}∗

which for every configuration c of Π yields all its valid representations in such
a way that:

– for every a in region i the symbol (a, i) ∈ (O ×D) occurs in the string
representation of c;

– the number of symbols (a, i) occurring in the string representation of c ex-
actly coincides with the number of symbols a occurring in region i;

– D0E
e0
0 ...DdE

ed

d is the second part of the string representation of configura-
tion c with ei, 0 ≤ i ≤ d, being the energy value assigned to membrane i
in c.

Sequential P Systems with Unit Rules and Energy Assigned to Membranes 207

In G, we start with an initial matrix [S → s] such that s is a valid string
representation of the initial configuration in the form defined above, i.e., s ∈
σ(initial configuration).

The rules in R are simulated in the following way (by [i] we denote the label
of the membrane encapsulating membrane i):

– For a rule (ini : a,Δe, b) with Δe ≥ 0 we take the matrix[
(a, [i])→ (b, i) , Di → DiE

Δe
i

]
.

– For a rule (ini : a,Δe, b) with Δe < 0 we take the matrix[
(a, [i])→ (̃b, i), (Ei → λ,)−Δe (̃b, i)→ (b, i)

]
.

The notation (Ei → λ,)n , n > 0, is taken for a sequence of n productions
Ei → λ. We should like to recall the fact that the sequence of −Δe rules
Ei → λ is only applicable if the amount ei of energy assigned to membrane
i fulfills ei + Δe ≥ 0; hence we may be forced to stop in the middle of a
matrix, because not enough energy is assigned to membrane i.

– For a rule (outi : a,Δe, b) with Δe ≥ 0 we take the matrix[
(a, i)→ (b, [i]) , Di → DiE

Δe
i

]
.

– For a rule (outi : a,Δe, b) with Δe < 0 we take the matrix[
(a, i)→ ˜(b, [i]), (Ei → λ,)−Δe ˜(b, [i])→ (b, [i])

]
.

After the application of a matrix described above, we obtain a valid string
representation of the configuration obtained from the previous configuration by
applying the corresponding rule in Π. On the other hand, every string obtained
from the (complete) application of a matrix to a valid string representation of
a reachable configuration c is a valid string representation of the configuration
resulting from the application of the corresponding rule in Π to c.

All the symbols introduced so far are non-terminal symbols. Except for the
objects of the form ˜(b, j) we now introduce the corresponding terminal symbol
at for the non-terminal symbol a and we add the matrices [a→ at] . For later
use in this proof, we also define the bijection t mapping each terminal symbol
at (back) to the original symbol a; t is a renaming morphism, and obviously the
family of matrix languages is closed under renamings.

Hence, in total we have obtained the matrix grammar

G = (N,T, S,M) ,
N = {S} ∪ {Di, Ei | 0 ≤ i ≤ d} ∪

{
(a, i) , (̃a, i) | a ∈ O, 0 ≤ i ≤ d

}
,

T =
{
at | a ∈

(
N −

{ ˜(b, j) | b ∈ O, 0 ≤ j ≤ d
})}

,

M = {[S → s] | s ∈ σ(initial configuration)}
∪
{[

(a, [i])→ (b, i) , Di → DiE
Δe
i

]
| (ini : a,Δe, b) ∈ R,Δe ≥ 0

}
∪ {

[
(a, [i])→ (̃b, i), (Ei → λ,)−Δe (̃b, i)→ (b, i)

]
|

(ini : a,Δe, b) ∈ R,Δe < 0}
∪
{[

(a, i)→ (b, [i]) , Di → DiE
Δe
i

]
| (outi : a,Δe, b) ∈ R,Δe ≥ 0

}
∪ {

[
(a, i)→ ˜(b, [i]), (Ei → λ,)−Δe ˜(b, [i])→ (b, [i])

]
|

(outi : a,Δe, b) ∈ R,Δe < 0}.

208 R. Freund et al.

Due to the given construction, for L (G) the following holds:

1. Every element in L (G) represents a reachable configuration of Π.
2. If c is a reachable configuration in Π, then L (G) contains a valid string

representation of c.

Now we construct a regular set R describing the non-halting configurations
of Π :

Let n be the total number of symbols (in the multiset sense) occurring in the
initial configuration. Then R = R1 ∪R2 ∪R3 ∪R4 where

– R1 is the (finite) union of all (regular) sets of the form
(O ×D)n1 {(a, i)} (O ×D)n2 {D0} {E0}∗ ...
{Dj} {Ej}∗ ... {Dd} {Ed}∗

such that n1 + n2 + 1 = n, (inj : a,Δe, b) ∈ R, region i contains membrane
j, and Δe ≥ 0;

– R2 is the (finite) union of all (regular) sets of the form
(O ×D)n1 {(a, i)} (O ×D)n2 {D0} {E0}∗ ...
{Dj} {Ej}−Δe {Ej}∗ ... {Dd} {Ed}∗

such that n1 + n2 + 1 = n, (inj : a,Δe, b) ∈ R, region i contains membrane
j, and Δe < 0;

– R3 is the (finite) union of all (regular) sets of the form
(O ×D)n1 {(a, j)} (O ×D)n2 {D0} {E0}∗ ...
{Dj} {Ej}∗ ... {Dd} {Ed}∗

such that n1 + n2 + 1 = n, (outj : a,Δe, b) ∈ R, and Δe ≥ 0;
– R4 is the (finite) union of all (regular) sets of the form

(O ×D)n1 {(a, j)} (O ×D)n2 {D0} {E0}∗ ...
{Dj} {Ej}−Δe {Ej}∗ ... {Dd} {Ed}∗

such that n1 + n2 + 1 = n, (outj : a,Δe, b) ∈ R, and Δe < 0.

The set R is a finite union of regular sets, i.e., R is a regular set, too, and
it describes the situations where a rule of Π is still applicable, hence, the non-
halting configurations. Therefore, (N∗ −R) contains a lot of garbage, but also
every string being a valid representation of a halting configuration.

Finally, let p : N∗ → {ei | 1 ≤ i ≤ d}∗ be the projection mapping Ei to ei

(i.e., p (Ei) = ei), 1 ≤ i ≤ d, and erasing all other symbols (p (X) = λ for all
X ∈ N − {Ei|1 ≤ i ≤ d}). In sum, we obtain

L (Π) = p (t (L (G)) ∩ (N∗ −R)) ,

i.e., (in the representation as multisets over {ei | 1 ≤ i ≤ d}) L (Π) , the set of
Parikh vectors generated by Π , is the projection of the intersection of the renam-
ing of a matrix language with a regular set, hence, due to the closure properties
of the family of matrix languages, L (Π) is a matrix language, too, which obser-
vation concludes the proof.

If we now combine the two previous lemmas we get the following characteri-
zation of PsMAT λ:

Sequential P Systems with Unit Rules and Energy Assigned to Membranes 209

Theorem 2. PsPE∗(unit) = PsMAT λ

Due to the construction in Lemma 1 we not only have obtained a charac-
terization of PsMAT λ by P systems with unit rules and energy assigned to
membranes but also a normal form for this kind of P systems, i.e., only one
symbol moving through a membrane structure is already sufficient (which of
course is the minimal resource needed to obtain reasonable results).

The results obtained in this paper are already optimal with respect to the
size of the multisets transported through a membrane, as in all proofs we needed
only one object to be present in the system. Yet the optimal numbers of mem-
branes necessary for obtaining computational completeness or for characterizing
PsMAT λ still remain open problems (although we conjecture that the number
of membranes needed in the universality results is already optimal). Some de-
pictive examples and a few more details of the results presented in this paper
can be found in [5].

Acknowledgements

This paper was inspired by a research proposal (see [10] for some details) exposed
during the Second Brainstorming Week taking place in Sevilla in the first week of
February, 2004. All authors acknowledge IST-2001-32008 project “MolCoNet”.

References

1. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin (1989)

2. R. Freund: Generalized P-systems. In: G. Ciobanu, Gh. Păun (Eds.): Proceedings
Fundamentals of Computation Theory. Lecture Notes in Computer Science 1684.
Springer-Verlag, Berlin (1999) 281–292

3. R. Freund: Sequential P-systems. Romanian Journal of Information Science and
Technology 4, 1-2 (2001) 77–88

4. R. Freund: Energy-controlled P systems. In: Gh. Păun, G. Rozenberg, A. Salomaa,
C. Zandron (Eds.): Membrane Computing. International Workshop, WMC-CdeA
2002, Curtea de Argeş, Romania, August 2002. Lecture Notes in Computer Science
2597. Springer-Verlag, Berlin (2003) 247–260

5. R. Freund, A. Leporati, M. Oswald, C. Zandron: Sequential P systems with unit
rules and energy assigned to membranes. In: [15] (2004) 168–182

6. R. Freund, M. Oswald: GP Systems with forbidding context. Fundamenta Infor-
maticae 49, 1-3 (2002) 81–102

7. R. Freund, M. Oswald: P systems with conditional communication rules assigned
to membranes. To appear in JALC

8. R. Freund, Gh. Păun: On the number of non-terminals in graph-controlled, pro-
grammed, and matrix grammars. In: M. Margenstern, Y. Rogozhin (Eds.): Proc.
Conf. Universal Machines and Computations, Chişinău (2001). Lecture Notes in
Computer Science 2055. Springer-Verlag, Berlin (2001) 214–225

9. R. Freund, Gh. Păun: From regulated rewriting to computing with membranes:
collapsing hierarchies. Theoretical Computer Science 312 (2004) 143–188

210 R. Freund et al.

10. A. Leporati, G. Mauri, C. Zandron: Simulating the Fredkin gate with energy–based
P systems. In: [15] (2004) 292–308

11. M. L. Minsky: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, New
Jersey (1967)

12. Gh. Păun: Computing with membranes. Journal of Computer and System
Sciences 61, 1 (2000) 108–143 and TUCS Research Report 208 (1998)
(http://www.tucs.fi)

13. Gh. Păun: Membrane Computing: an Introduction. Springer-Verlag, Berlin (2002)
14. Gh. Păun, Y. Suzuki, H. Tanaka: P Systems with energy accounting. Int. J. Com-

puter Math. 78, 3 (2001) 343–364
15. Gh. Păun, A. Riscos Nuñez, A. Romero Jiménez, F. Sancho Caparrini (Eds.): Sec-

ond Week on Membrane Computing. Sevilla, Spain, Feb. 2-7, 2004. Dept. of Com-
puter Sciences and Artificial Intelligence, Univ. of Sevilla Tech. Report 01/2004
(2004)

16. Rozenberg, G., Salomaa, A. (Eds.): Handbook of Formal Languages. Springer-
Verlag, Berlin, Heidelberg (1997)

17. The P Systems Web Page, http://psystems.disco.unimib.it

Hierarchies of DLOGTIME-Uniform Circuits

Chuzo Iwamoto1, Naoki Hatayama1, Kenichi Morita1, Katsunobu Imai1, and
Daisuke Wakamatsu2

1 Hiroshima University, Graduate School of Engineering
Higashi-Hiroshima, 739-8527 Japan

chuzo@hiroshima-u.ac.jp
2 Murata Machinery, Kyoto 612-8418, Japan

Abstract. We present complexity hierarchies on circuits under two
DLOGTIME-uniformity conditions. It is shown that there is a lan-
guage which can be recognized by a family of UE-uniform circuits of
depth d(1 + ε)(log n)r1 and size nr2(1+ε) but not by any family of UE-
uniform circuits of depth d(log n)r1 and size nr2 , where ε > 0, d > 0, r1 >
1, and r2 ≥ 1 are arbitrary rational constants. It is also shown that there
is a language which can be recognized by a family of UD-uniform circuits
of depth (1+o(1))t(n) log z(n) and size (16t(n)+ψ(n)(log z(n))2)(z(n))2

but not by any family of UD-uniform circuits of depth t(n) and size z(n),
where ψ(n) is an arbitrary slowly growing function not bounded by O(1).

1 Introduction

One of the basic problems in complexity theory is to find the slightest enlarging
of the complexity bound which allows new functions to be computed. There is a
huge amount of literature on hierarchy results on various models, such as Turing
machines [2,5,7,8,9,11,18,21,22], random access machines [4,12,17], and cellular
automata [14,16]. In this paper, we investigate parallel complexity hierarchies
based on uniform families of circuits.

For circuits, there are four major uniformities, UB, UBC, UD, and UE, in in-
creasing order of strength [19]. It is well known that presenting a proper hierar-
chy of parallel complexity classes is very difficult. For example, it is not known
that NCk is strictly included in NCk+1, where NCk is the class of languages ac-
cepted by UBC-uniform (= logspace-uniform) circuits of depth O((log n)k) and
size polynomial. Furthermore, it is not even known whether NC1 �=? NP or all sets
in the class P are accepted by UBC-uniform circuits of linear size and logarith-
mic depth. Therefore, it is hopeless to try to present hierarchies for UBC-uniform
circuits.

Iwama and Iwamoto [12] presented a hierarchy result under UE-uniformity,
which is the strongest uniformity among the above four uniformities. (UE-
uniform (resp. UD-uniform) is also called DLOGTIME-uniform using the Ex-
tended (resp. Direct) connection language.) It was shown that there are con-
stants c1, c2, and a language L such that L can be recognized by a family of
UE-uniform circuits of depth c1t(n) and size (z(n))c2 but not by any family of

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 211–222, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

212 C. Iwamoto et al.

UE-uniform circuits of depth t(n) and size z(n), where t(n) �= O(log z(n)) is a
polynomial in log z(n).

In this paper, we tighten this hierarchy result. It is shown that there is a
language which can be recognized by a family of UE-uniform circuits of depth
d(1 + ε)(logn)r1 and size nr2(1+ε) but not by any family of UE-uniform circuits
of depth d(logn)r1 and size nr2 , where ε > 0, d > 0, r1 > 1, and r2 ≥ 1 are
arbitrary rational constants. Namely, constants c1 and c2 in [12] can be replaced
by an arbitrarily small constant 1 + ε when t(n) = d(logn)r1 and z(n) = nr2 .

Furthermore, we present a hierarchy result under UD-uniformity. It is shown
that there is a language which can be recognized by a family of UD-uniform
circuits of depth (1+o(1))t(n) log z(n) and size (16t(n)+ψ(n)(log z(n))2)(z(n))2

but not by any family of UD-uniform circuits of depth t(n) and size z(n), where
ψ(n) is an arbitrary slowly growing function not bounded by O(1). The hierarchy
in [12] uses the so-called depth-universal circuit [3], whose size is not so efficient;
in this paper, we construct a new universal circuit which is suitable for UD-
uniformity.

Since we consider fan-in 2 circuits in this paper, our hierarchy results do not
hold for depth less than log n. In the class NC1, several separation results have
been known. For example, there is a noncollapsing hierarchy in AC0, which is
the class of languages recognized by constant depth, polynomial-size, unbounded
fan-in circuits. It is known [20] that there are languages in AC0

k−AC0
k−1 for each

k > 0, where AC0
k is the class of languages recognized by DLOGTIME-uniform,

depth-k, polynomial-size, unbounded fan-in circuits. Also, it is known [1,6] that
the exclusive OR function is not in AC0, which implies that AC0 ⊆′ NC1.

For other parallel models, several papers presented proper hierarchies. It was
shown that there is a constant d such that dt(n)-time PRAMs with p(n) pro-
cessors are more powerful than t(n)-time PRAMs with the same p(n) pro-
cessors [12]. It was also shown that t2(n)-time s(n)-space parallel TMs with
p(n) processors are more powerful than t1(n)-time s(n)-space parallel TMs with
p(n) processors if t2(n) �= O(t1(n) log s(n)) [15].

In Section 2, we give definitions of circuits and uniformities. The main theo-
rems are also given in that section. The proofs are given in Sections 3 and 4.

2 Definitions and Results

The definitions of circuits are mostly from [19]. A combinatorial circuit is a
directed acyclic graph, where each node (gate) has indegree d ≤ 2 and is la-
beled by some Boolean function of d variables. Nodes with indegree 0 (resp.
outdegree 0) are inputs (resp. outputs). In this paper, we consider a family of
circuits C = (α1, α2, . . . , αn, . . .), where αn has n inputs and one output. We
assume that gate 0 is the output and gates 1, . . . , n are the inputs. We denote
the depth and size of αn by t(n) and z(n), respectively.

Let gate(g, p) denote the gate reached by following the path p ∈ {L,R}∗
towards the inputs of a circuit. For example, gate(g, ε) is gate g, gate(g, L) is
gate g’s left input, gate(g, LR) is gate g’s left input’s right input, and so on.

Hierarchies of DLOGTIME-Uniform Circuits 213

The standard encoding αn of a circuit αn is a string of 4-tuples 〈n, g, p, y〉, where
g ∈ {0, 1}∗, p ∈ {ε, L,R}, and y ∈ {∧,∨,¬} ∪ {0, 1}∗, such that in αn either
(i) p = ε and gate g is a y-gate, y ∈ {∧,∨,¬}, or (ii) p �= ε and gate(g, p) is gate y,
y ∈ {0, 1}∗. The direct connection language LDC(C) of a circuit family C is the
set of strings of the form 〈n, g, p, y〉. The extended connection language LEC(C)
is as above, except p ∈ {L,R}∗ and |p| ≤ log z(n).

A family of circuits C = (α1, α2, . . . , αn, . . .) of size z(n) is said to be UBC-
uniform if the mapping n → αn is computable by an O(log z(n))-space deter-
ministic TM. A family of circuits of size z(n) is said to be UD-uniform (resp. UE-
uniform) if there is an O(log z(n))-time deterministic TM recognizing LDC(C)
(resp. LEC(C)). Now we are ready to present our main theorems.

Theorem 1. Let t(n) = d(log n)r1 and z(n) = nr2 , where d > 0, r1 > 1, and
r2 ≥ 1 are arbitrary rational constants. For any small rational constant ε > 0,
there is a language which can be recognized by a family of UE-uniform circuits of
depth (1+ ε)t(n) and size (z(n))1+ε but not by any family of UE-uniform circuits
of depth t(n) and size z(n).

The proof of this theorem is given in Section 3. It was shown that there are
constants c1, c2, and a language L such that L can be recognized by a family of
UE-uniform circuits of depth c1t(n) and size (z(n))c2 but not by any family of
UE-uniform circuits of depth t(n) and size z(n) [12]. Theorem 1 improves both
the constant factor c1 of depth and the exponent c2 of size to 1+ε simultaneously.
Although the values of c1 and c2 were not mentioned in [12], a careful analysis
shows c1 = c2 = 3+o(1). The next theorem is a hierarchy of UD-uniform circuits.

Theorem 2. Suppose that z(n) ≥ n, t(n) ≥ log z(n), and ψ(n) �= O(1)
are arbitrary functions such that 3log z(n)4, t(n), and ψ(n) are computable
by O(log z(n))-time deterministic TMs if input n is given as a binary string
of length)logn* + 1. There is a language which can be recognized by a fam-
ily of UD-uniform circuits of depth (1 + o(1))t(n) log z(n) and size (16t(n) +
ψ(n)(log z(n))2)(z(n))2 but not by any family of UD-uniform circuits of depth
t(n) and size z(n).

The proof is given in Section 4. It is known [12] that functions computable
by O(log z(n))-time TMs include most common polylogarithmic functions, such
as logn log logn and c(logn)k.

3 Hierarchy of UE-Uniform Circuit Families

In this section, we prove Theorem 1. Let UE(t(n), z(n)) denote the class of lan-
guages recognized by families of UE-uniform circuits of depth t(n) and size z(n).

3.1 Translation Lemma for UE-Uniform Circuit Families

Lemma 1. Suppose that t1(n), t2(n) ≥ logn and z1(n), z2(n) ≥ n are arbitrary
polylogarithmic and polynomial functions, respectively, such that t1(n), t2(n),

214 C. Iwamoto et al.

log z1(n), and log z2(n) are computable by O(log n)-time deterministic TMs if
input n is given as a binary string of length)logn*+ 1. If UE(t1(n) + 1, z1(n) +
n) ⊆ UE(t2(n), z2(n)), then UE(t1(2kn), z1(2kn)) ⊆ UE(t2(2kn), z2(2kn)), where
k ≥ 1 is an arbitrary integer.

The set of functions computable by O(log n)-time deterministic TMs includes
d(log n)r1 and r2 logn. In the rest of this subsection, we prove Lemma 1.

Let C1 = (α1, α2, . . . , αn, . . .) be a family of UE-uniform circuits of
depth t1(2kn) and size z1(2kn). Let L1 be the language recognized by C1. We
define a language L′

1 as L′
1 = {x1l | x ∈ L1 and |x|+ l = 2k|x|}, where 1l is a

padding sequence of length l.
We construct a family of UE-uniform circuits C′

1 = (α′
1, α

′
2, . . . , α

′
n, . . .) which

recognizes the language L′
1 as follows. Consider the nth circuit α′

n. If n cannot
be written as n = 2ki for any integer i, then α′

n accepts the empty set. If n = 2ki,
then α′

n is composed of the ith circuit αi of C1, an (n− i)-input AND-circuit (of
depth log(n− i) and size n− i− 1), and an AND-gate. The inputs of the AND-
gate are the outputs of αi and the (n − i)-input AND-circuit. Therefore, the
depth and size of C′

1 are bounded by t1(2ki)+1 (= t1(n)+1) and z1(2ki)+n− i
(≤ z1(n) + n), respectively.

Recall that the assumption of Lemma 1 is UE(t1(n) + 1, z1(n) + n) ⊆
UE(t2(n), z2(n)). From this assumption and the previous paragraph, one can
see that there is a family of UE-uniform circuits C′

2 = (β′
1, β

′
2, . . . , β

′
n, . . .) of

depth t2(n) and size z2(n) which recognizes the language L′
1.

We construct a family of UE-uniform circuits C2 = (β1, β2, . . . , βn, . . .) which
recognizes the language L1 as follows. Consider the 2knth circuit β′

2kn of C′
2. By

changing the last l = 2kn − n inputs of β′
2kn into constant value 1, we obtain a

circuit of n inputs. This is the circuit βn. Note that β′
2kn has depth t2(2kn) and

size z2(2kn), and both β′
2kn and βn have the same structure. Hence, βn also has

depth t2(2kn) and size z2(2kn). This completes the proof of Lemma 1.

3.2 Proof of Theorem 1

It remains to show Theorem 1 by using Lemma 1 and a hierarchy result in [12].
The proof is similar to [10], but new techniques are introduced in order to tighten
both the constant factor of depth and the exponent of size simultaneously.

Let p and q are sufficiently large integers satisfying r2 = p/q, (1 + 1/p)r1 <
1 + ε, and 1/q < ε. Then, the following proposition holds.

Proposition 1. There is an integer n0 such that n(p+1)/q +n ≤ nr2(1+ε) for all
n ≥ n0.

Proof. Since r2 = p/q and r2 + ε ≤ r2(1+ ε), we prove that there is an integer n0

such that nr2+(1/q) + n ≤ nr2+ε for all n ≥ n0. Assume for contradiction that,
for any (large) integer n′

0, there is an integer n′ such that n′ ≥ n′
0 and

(n′)r2+(1/q) + (n′) > (n′)r2+ε.

Hierarchies of DLOGTIME-Uniform Circuits 215

Dividing both sides of this inequality by (n′)r2+(1/q) yields

1 +
1

(n′)(r2−1)+(1/q)
> (n′)ε−(1/q).

Recall that r2 ≥ 1 and ε > 1/q. If we let n′
0 → ∞, then the left-hand side

asymptotically becomes 1 while the right-hand side becomes infinitely large, a
contradiction.

From Proposition 1, there are integers p, q, and n0 such that

nr2 = np/q < n(p+1)/q + n ≤ nr2(1+ε)

for all n ≥ n0. Let d′ = d
(p/q)r1 . Then, the following inequality holds:

d′((p + 1)/q)r1 =
d

(p/q)r1
((p + 1)/q)r1 = d(1 + 1/p)r1 < d(1 + ε)

Furthermore, if we consider sufficiently large n such that

(d(1 + ε)− d′((p + 1)/q)r1)(logn)r1 ≥ 1,

then
d′((p + 1)/q)r1(log n)r1 + 1 ≤ d(1 + ε)(log n)r1 .

Therefore, to show Theorem 1, it is enough to prove the following relation (1):

UE(d′(p/q)r1(logn)r1 , np/q) ⊆′ UE(d′((p+1)/q)r1(log n)r1 +1, n(p+1)/q +n) (1)

Assume for contradiction that the relation (1) does not hold; namely,

UE(d′((p + 1)/q)r1(logn)r1 + 1, n(p+1)/q + n) ⊆ UE(d′(p/q)r1(log n)r1 , np/q).

From Lemma 1, we obtain

UE(d′(k(p + 1)n/q)r1 , 2k(p+1)n/q) ⊆ UE(d′(kpn/q)r1 , 2kpn/q). (2)

Let i be an integer. By substituting k = (p+ i)q into the relation (2), we obtain

UE(d′((p + 1)(p + i)n)r1 , 2(p+1)(p+i)n) ⊆ UE(d′(p(p + i)n)r1 , 2p(p+i)n). (3)

When i ≥ 1, p(p+ i) ≤ (p+ 1)(p+ i− 1) holds. Thus, if i ≥ 1, then relation (3)
can be rewritten as

UE(d′((p + 1)(p + i)n)r1 , 2(p+1)(p+i)n)
⊆ UE(d′((p + 1)(p + i− 1)n)r1 , 2(p+1)(p+i−1)n).

(4)

Substituting i = 0 into (3) yields

UE(d′((p + 1)pn)r1 , 2(p+1)pn) ⊆ UE(d′(p2n)r1 , 2p2n). (5)

216 C. Iwamoto et al.

Let c be an integer (the value of c will be fixed later). Substituting i =
1, 2, · · · , (c− 1)p into (4) yields

UE(d′((p + 1)(p + 1)n)r1 , 2(p+1)(p+1)n)
⊆ UE(d′((p + 1)pn)r1 , 2(p+1)pn),

UE(d′((p + 1)(p + 2)n)r1 , 2(p+1)(p+2)n)
⊆ UE(d′((p + 1)(p + 1)n)r1 , 2(p+1)(p+1)n),
...

UE(d′((p + 1)(cp)n)r1 , 2(p+1)(cp)n)
⊆ UE(d′((p + 1)(cp− 1)n)r1 , 2(p+1)(cp−1)n).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6)

Since cp2n < (p + 1)(cp)n and r1 > 1, it is clear that

UE(cd′(p2n)r1 , 2cp2n) ⊆ UE(d′((p + 1)(cp)n)r1 , 2(p+1)(cp)n). (7)

From inclusion relations (5), (6), and (7), we obtain

UE(cd′(p2n)r1 , 2cp2n) ⊆ UE(d′(p2n)r1 , 2p2n). (8)

On the other hand, it is known [12] that there are constants c1 and c2 such that

UE(t(n), z(n)) ⊆′ UE(c1t(n), (z(n))c2). (9)

If we choose c as an integer such that c ≥ c1 and c ≥ c2, then the relation (8)
contradicts (9). This completes the proof of Theorem 1.

Remark 1. In [12], z(n) ≥ n and t(n) �= O(log n) were defined as polynomial
and polylogarithmic functions, respectively, such that log z(n) and t(n) are com-
putable by O(log n)-time TMs. However, the hierarchy in [12] holds also for
all functions z(n) ≥ n and t(n) �= O(log z(n)) such that log z(n) and t(n) are
computable by O(log z(n))-time TMs.

4 Hierarchy of UD-Uniform Circuit Families

We construct a family of circuits αn of depth (1 + o(1))t(n) log z(n) and size
(16t(n) + ψ(n)(log z(n))2)(z(n))2 such that αn can recognize a language which
cannot be recognized by any family of circuits βn of depth t(n) and size z(n).

4.1 High-Level Description

The circuit αn is composed of four subcircuits, αtm
n , αtype

n , αcon
n and αsim

n (see
Fig. 1). The output of αtm

n is 1 iff there is a TM, say, Tb, such that the input
string b is an encoding of Tb. Let LDC be the direct connection language accepted
by Tb, and let βn be the circuit defined by LDC. Circuit αtype

n computes the type
of each gate of βn by simulating Tb. Similarly, αcon

n computes the connection
between βn’s gates by simulating Tb. Circuit αsim

n simulates βn on input string b,

Hierarchies of DLOGTIME-Uniform Circuits 217

Input string b

Circuit α type
n

type connection

output of βn

Is an encodingb

NOT gate

of some TM?

AND gate

Circuit α con
nCircuit α tm

n

Circuit α sim
n

Fig. 1. High-level description of αn

i.e., αsim
n outputs 1 iff βn outputs 1. The output of αn is 1 iff the outputs of αtm

n

and αsim
n are 1 and 0, respectively. In Lemma 2, we will show that the depth

and size of αn are (1 + o(1))t(n) log z(n) and (16t(n) + ψ(n)(log z(n))2)(z(n))2,
respectively. In Lemma 3, we will show that the language, recognized by a family
of UD-uniform circuits αn, cannot be recognized by any family of UD-uniform
circuits of depth t(n) and size z(n).

It is known [12] that there is a family of UE-uniform circuits of depth O(log n)
and size≤ n2 which can decide whether a given string is an encoding of some TM.
Thus, we omit the description of αtm

n . If the given string b is not an encoding,
then αtm

n outputs 0, and thus the output of αn becomes 0, regardless of the
outputs of αtype

n , αcon
n and αsim

n . Therefore, in the following, we assume that the
input b is an encoding of some TM Tb.

4.2 Circuits αsim
n

In [12], the depth-universal circuit [3] was used for αsim
n . In this paper, we con-

struct a new universal circuit whose size is smaller than the depth-universal
circuit constructed in [3]. The idea is illustrated in Fig. 2 (the basic idea was
presented by the same author at [13].)

Let z′(n) = 2�log z(n)�. Since we assumed that 3log z(n)4 is computable by an
O(log z(n))-time TM, the value z′(n) is also computable by an O(log z(n))-time
TM. Note that z′(n) < 2z(n). Circuit αsim

n has subcircuits

cgate(t, n + 1), cgate(t, n + 2), . . . , cgate(t, z′(n))

for 1 ≤ t ≤ t(n), which are represented by n + 1 through z′(n) in Fig. 2(a).
Each circuit cgate(t, i) corresponds to the gate gi of βn. Each cgate(t, i) is com-
posed of eight gates shown in Fig. 2(c). Each cgate(t, i) receives three inputs from
the left side, which determine the type of gi. These three inputs are given by the
circuit αtype

n . Circuit cgate(0, 0), represented by 0 , corresponds to the output
gate of βn and is also composed of the eight gates in Fig. 2(c). Circuits

cgate(0, 1), cgate(0, 2), . . . , cgate(0, n),

218 C. Iwamoto et al.

Input string

1

n+1

2 3 nt=0

n+2t=1

n+1 n+2t=2

n+1 n+2t=3

n+1 n+2t=4

n+1 n+2t=t(n)

0

output

=

(a)

(b)

(c)

b

type

connection

z (n)’

z (n)’

z (n)’

z (n)’

z (n)’

Fig. 2. (a) Circuit αsim
n , (b) Connection between gates, (c) Circuit cgate(t, i)

represented by 1 through n , are βn’s input gates which are AND-gates of
fan-in 1.

A set of grids in Fig. 2(b) is composed of (z′(n) − n) AND-gates of fan-in 2
and an OR-gate of fan-in z′(n)− n (= a fan-in-2 circuit of depth log(z′(n)− n)
and size z′(n)− n− 1). The inputs of the AND-gates in Fig. 2(b) determine the
connection between t and t + 1. Those are given by the circuit αcon

n .
Each gate can be uniquely encoded to a string of length O(log z(n)) in binary.

It is not hard to see that the direct connection language of αsim
n can be recognized

by an O(log z(n))-time TM.

4.3 Circuits αtype
n and αcon

n

Recall that LDC is the direct connection language accepted by Tb, and βn is the
circuit defined by LDC. In order to find the type of each gate g of βn, we decide

Hierarchies of DLOGTIME-Uniform Circuits 219

whether 〈n, g, ε, y〉 is in LDC for all y ∈ {∧,∨,¬} and all gates g by simulating Tb.
Thus, αtype

n has subcircuits ctype
n (g, y) which check whether 〈n, g, ε, y〉 is in LDC,

i.e., the type of gate g is y.
Let ψ(n) �= O(1) be an arbitrary slowly growing function computable by an

O(log z(n))-time TM. We consider k-tape k-state TM Tb which uses 0 and 1 as its
tape symbols. We do not know the value k previously, so we construct subcircuits
ctype
n (g, y) for all 1 ≤ k ≤ ψ′(n), where ψ′(n) be an arbitrary O(log z(n))-time-

computable function such that ψ′(n) �= O(1) and (ψ′(n))62ψ′(n) ≤ ψ(n). (For
example, let ψ′(n) = log logψ(n). The reason why we need such a ψ′(n) is
given in Section 4.4.) In Lemma 3, we will consider a sufficiently long input
string b such that k ≤ ψ′(|b|). (Strictly speaking, ctype

n (g, y) should be written as
ctype
n (g, y, k). For simplicity of notation, we omit k.) The structure of ctype

n (g, y)
is similar to [12], but circuits constructed in this paper are much smaller.

We represent the configuration of Tb at step t by four words

s(g, y; t), w0(g, y; t, i, j), w1(g, y; t, i, j), h(g, y; t, i, j),

where s(g, y; t) is a log k-bit word, and the remaining three words are single
bits. s(g, y; t) represents the state of Tb at step t. If the jth cell of the ith
tape of Tb contains symbol 0 (resp. 1) at step t, then w0(g, y; t, i, j) = 1 (resp.
w1(g, y; t, i, j) = 1); otherwise w0(g, y; t, i, j) = 0 (resp. w1(g, y; t, i, j) = 0). If the
head of the ith tape of Tb is placed at the jth cell at step t, then h(g, y; t, i, j) = 1;
otherwise h(g, y; t, i, j) = 0.

Suppose that the transition rules of Tb are numbered 1, 2, . . . , f, . . . , k2k. We
transform each rule f by the following words

p(f), a(f ; i), q(f), b(f ; i), d(f ; i),

where p(f) and q(f) are log k-bit words, and a(f ; i), b(f ; i), and d(f ; i) are single
bits. Those words mean that if the state is p(f) and the ith head is reading
the symbol a(f ; i) for each i, then the state is changed into q(f) and the ith
head writes b(f ; i) and moves to the right (left) if d(f ; i) = 1 (d(f ; i) = 0). This
transformation can be done by a circuit whose depth is approximately log k.

Now we show how to simulate a single step of TM Tb. For t = 0, s(g, y; 0) rep-
resents the initial state, w0(g, y; 0, 1, j) and w1(g, y; 0, 1, j) for j ≥ 1 contain the
input string 〈n, g, ε, y〉, and h(g, y; 0, i, 1) = 1 for 1 ≤ i ≤ k. The remaining words
w0(g, y; 0, i, j), w1(g, y; 0, i, j), and h(g, y; 0, i, j) are 1, 0, and 0, respectively. In
the following, we show the connection between steps t and t + 1.

We can decide whether two l-bit words y, z are the same by EQ(y, z) =∧l
i=1

(
yizi ∨ (¬yi)(¬zi)

)
, where yi and zi are the ith bit of y and z, respectively.

We compare the current state and p(f) by

cmp-state(g, y, f ; t) = EQ
(
s(g, y; t), p(f)

)
.

Since s(g, y; t) and p(f) are log k-bit words, the depth is approximately log log k.
We then compare the symbol read by the ith head of Tb and a(f ; i) by

cmp-sybl1(g, y, f ; t, i) =
ψ′(n) log z′(n)∨

j=1

(
w1(g, y; t, i, j) ∧ a(f ; i) ∧ h(g, y; t, i, j)

)
,

220 C. Iwamoto et al.

cmp-sybl0(g, y, f ; t, i) =
ψ′(n) log z′(n)∨

j=1

(
w0(g, y; t, i, j) ∧ ¬a(f ; i) ∧ h(g, y; t, i, j)

)
.

Here, we must consider the leftmost ψ′(n) log z′(n) cells on each tape for
ψ′(n) �= O(1), since Tb is an O(log z(n))-time TM. An OR-gate of fan-
in ψ′(n) log z′(n) can be replaced by a circuit of depth log log z′(n) + logψ′(n).
We define cmp-sybl(g, y, f ; t, i) as

cmp-sybl(g, y, f ; t, i) = cmp-sybl1(g, y, f ; t, i) ∨ cmp-sybl0(g, y, f ; t, i).

Then cmp-sybl(g, y, f ; t, i) = 1 iff the ith head of Tb is reading a(f ; i). There-
fore, the current configuration agrees with the transition rule f iff the following
agree(g, y, f ; t) is 1.

agree(g, y, f ; t) = cmp-state(g, y, f ; t) ∧
k∧

i=1

cmp-sybl(g, y, f ; t, i)

Now the next state can be computed by

s(g, y; t + 1) =
k2k∨
f=1

(
q(f) ∧ agree(g, y, f ; t)

)
.

Tape symbol w1(g, y; t+1, i, j) is set to be b(f ; i) if the ith head is placed at the
jth cell and writes 1 into the jth cell and the current configuration agrees with
the transition rule f . Thus, tape symbols are updated as follows:

w1(g, y; t + 1, i, j) =
(
w1(g, y; t, i, j) ∧ ¬heads(g, y; t, i, j)

)
∨

k2k∨
f=1

(
b(f ; i) ∧ heads(g, y; t, i, j) ∧ agree(g, y, f ; t)

)
w0(g, y; t + 1, i, j) =

(
w0(g, y; t, i, j) ∧ ¬heads(g, y; t, i, j)

)
∨

k2k∨
f=1

(
¬b(f ; i) ∧ heads(g, y; t, i, j) ∧ agree(g, y, f ; t)

)
The head positions are updated if the head positions at step t + 1 are adjacent
to the positions at step t. We define h(g, y; t + 1, i, j) as

h(g, y; t+ 1, i, j) =
k2k∨
f=1

((
h(g, y; t, i, j − 1) ∧ d(f ; i) ∧ agree(g, y, f ; t)

)
∨
(
h(g, y; t, i, j + 1) ∧ ¬d(f ; i) ∧ agree(g, y, f ; t)

))
.

We omit the description of circuit αcon
n , since it is similar to αtype

n . The
difference is as follows. In order to find the inputs of each gate g, we must decide

Hierarchies of DLOGTIME-Uniform Circuits 221

whether 〈n, g, p, y〉 is in LDC for every pair of gates g and y, where p ∈ {L,R}.
Thus, αcon

n has subcircuits cconn (g, p, y) checking whether 〈n, g, p, y〉 is in LDC.
For example, we use h(g, p, y; t, i, j) where p ∈ {L,R} and g, y ∈ {0, 1}∗, instead
of h(g, y; t, i, j) where g ∈ {0, 1}∗ and y ∈ {∧,∨,¬}.

4.4 Analysis of Depth and Size

Let us start with the size of αcon
n . The number of gates h(g, p, y; t, i, j) in αcon

n

is calculated as (z′(n) · 2 · z′(n)) · (ψ′(n) log z′(n) · ψ′(n) · ψ′(n) log z′(n)) · ψ′(n)
(=2(z′(n))2(ψ′(n))4(log z′(n))2), where the last ψ′(n) is for considering k-tape k-
state TMs for 1 ≤ k ≤ ψ′(n). Each h(g, p, y; t, i, j) is the output of an OR-gate of
fan-in k2k (= a fan-in-2 circuit of depth k+log k and size k2k−1). Therefore, the
size of αcon

n is bounded by O((z(n))2(ψ′(n))52ψ′(n)(log z(n))2), which is further
bounded by ψ(n)(z(n))2(log z(n))2 for large n because (ψ′(n))62ψ′(n) ≤ ψ(n).
(Note that the number of the remaining gates, such as w0(g, p, y; t, i, j), is the
same as h(g, p, y; t, i, j).) The following lemmas complete the proof of Theorem 2.

Lemma 2. Circuit αn has depth (1 + o(1))t(n) log z(n) and size (16t(n) +
ψ(n)(log z(n))2)(z(n))2.

Proof. αsim
n is composed of t(n) levels (see Fig. 2(a)), each of which has

depth (1 + log z′(n)) + 4 (see Figs. 2(b) and 2(c)). Therefore, the depth of αsim
n

is t(n)(log z′(n) + 5), which is bounded by (1 + o(1))t(n) log z(n). αtype
n simu-

lates an O(log z(n))-step TM Tb, and a single step needs depth O(log log z(n))
(see cmp-sybl0). Therefore, αtype

n has depth O(ψ′(n) log z(n) log log z(n)) (5
t(n) log z(n)). Hence, the depth of αn is bounded by (1 + o(1))t(n) log z(n).

Each level of αsim
n is composed of (z′(n) − n) subcircuits, each of which has

2((z′(n) − n) + (z′(n) − n − 1)) + 8 gates (see Figs. 2(b) and 2(c)). Therefore,
each level of αsim

n has at most (z′(n) − n)(2((z′(n) − n) + (z′(n) − n − 1)) + 8)
gates, which is less than 4(z′(n))2 ≤ 16(z(n))2. Recall that αcon

n has at most
ψ(n)(z(n))2(log z(n))2 gates, and αtm

n and αtype
n are much smaller than αcon

n .
Therefore, the size of αn is (16t(n) + ψ(n)(log z(n))2)(z(n))2.

Lemma 3. Any family of UD-uniform circuits of depth t(n) and size z(n) can-
not recognize the language which is recognized by the above-defined αn.

Proof. Assume for contradiction that there is a family of UD-uniform circuits,
say, βn, of depth t(n) and size z(n) which can recognize the language recognized
by αn. Since βn is UD-uniform, there is an O(log z(n))-time k-state k-tape TM Tb

which recognizes the direct connection language LDC of βn for some constant k.
Consider a sufficiently long encoding string b of TM Tb such that k ≤ ψ′(|b|).

If such a string b is given to αn as its input, then (i) αtm
n outputs 1, (ii) αtype

n

correctly outputs the type of every gate of βn, (iii) αcon
n outputs the connection

between every pair of βn’s gates, and therefore (iv) αsim
n outputs 0 iff βn out-

puts 0. Recall that αn outputs 1 iff αtm
n and αsim

n output 1 and 0, respectively.
Therefore, αn outputs 1 iff βn outputs 0, a contradiction.

222 C. Iwamoto et al.

References

1. M. Ajtai, Σ1
1-formulae on finite structure, Ann. Pure Appl. Logic, 24 (1983) 1–48.

2. S.A. Cook, A hierarchy for nondeterministic time complexity, J. Comput. System
Sci., 7 (1973) 343–353.

3. S.A Cook and H.J. Hoover, “A depth-universal circuit,” SIAM J. Comput., 14(4),
833–839, 1985.

4. S.A. Cook and R.A. Reckhow, Time bounded random access machines, J. Comput.
System Sci., 7 (1973) 354–375.

5. M. Fürer, The tight deterministic time hierarchy, Proc. 14th Annual ACM Symp.
on Theory of Computing, San Francisco, California, 1982, 8–16.

6. M. Furst, J. Saxe, and M. Sipser, Parity, circuits, and the polynomial time hierar-
chy, Math. Systems Theory, 17 (1984) 12–27.

7. J. Hartmanis, P.M. Lewis II, and R.E. Stearns, Hierarchies of memory limited
computations, Proc. 6th Annual IEEE Symp. on Switching Circuit Theory and
Logical Design, 1965, 179–190.

8. J. Hartmanis and R.E. Stearns, On the computational complexity of algorithms,
Trans. Amer. Math. Soc., 117 (1965) 285–306.

9. O.H. Ibarra, A hierarchy theorem for polynomial-space recognition, SIAM J. Com-
put., 3 3 (1974) 184–187.

10. O.H. Ibarra, S.M.Kim, and S. Moran, Sequential machine characterizations of trel-
lis and cellular automata and applications, SIAM J. Comput., 14 2 (1985) 426–447.

11. O.H. Ibarra and S.K. Sahni, Hierarchies of Turing machines with restricted tape
alphabet size, J. Comput. System Sci., 11 (1975) 56–67.

12. K. Iwama and C. Iwamoto, Parallel complexity hierarchies based on PRAMs and
DLOGTIME-uniform circuits, Proc. IEEE Conf. on Computational Complexity,
Philadelphia, 1996, 24–32.

13. C. Iwamoto, Complexity hierarchies on circuits under restricted uniformities, Pre-
sentation at ICCI, Kuwait, 2000.

14. C. Iwamoto, T. Hatsuyama, K. Morita, and K. Imai, Constructible functions in
cellular automata and their applications to hierarchy results, Theoret. Comput.
Sci., 270 (2002) 797–809.

15. C. Iwamoto and K. Iwama, Time complexity hierarchies of extended TMs for
parallel computation, IEICE Trans. Inf. and Syst., J80-D-I 5 (1997) 421–427 (in
Japanese).

16. C. Iwamoto and M. Margenstern, Time and space complexity classes of hyperbolic
cellular automata, IEICE Trans. on Inf. and Syst., E87-D 3 (2004) 265–273.

17. W.W. Kirchherr, A hierarchy theorem for PRAM-based complexity classes, Proc.
8th Conf. on Foundations of Software Technology and Theoretical Computer Sci-
ence (Lecture Notes in Computer Science), 338, Pune, India, 1988, 240–249.

18. W.J. Paul, On time hierarchies, J. Comput. System Sci. 19 (1979) 197–202.
19. W.L. Ruzzo, On uniform circuit complexity, J. Comput. System Sci., 22 (1981)

365–383.
20. M. Sipser, Borel sets and circuit complexity, Proc. 15th Annual ACM Symp. on

Theory of Computing, Boston, Massachusetts, 1983, 61–69.
21. S. Žák, A Turing machine space hierarchy, Kybernetika, 26 2 (1979) 100–121.
22. S. Žák, A Turing machine time hierarchy, Theoret. Comput. Sci., 26 (1983) 327–

333.

Several New Generalized Linear- and

Optimum-Time Synchronization Algorithms for
Two-Dimensional Rectangular Arrays

Hiroshi Umeo�, Masaya Hisaoka, Masato Teraoka, and Masashi Maeda

Univ. of Osaka Electro-Communication,
Neyagawa-shi, Hatsu-cho 18-8, Osaka, 572-8530, Japan

umeo@umeolab.osakac.ac.jp

Abstract. We propose several new generalized synchronization algo-
rithms for 2-D cellular arrays. Firstly, a generalized linear-time synchro-
nization algorithm and its 14-state implementation are given. It is shown
that there exists a 14-state 2-D CA that can synchronize any m×n rect-
angular array in m+n + max(r+ s,m+n− r− s+2)−4 steps with the
general at an arbitrary initial position (r, s),where 1 ≤ r ≤ m, 1 ≤ s ≤ n.
The generalized linear-time synchronization algorithm is interesting in
that it includes an optimum-step synchronization algorithm as a special
case where the general is located at one corner. In addition, we propose
a noveloptimum-time generalized synchronization scheme that can syn-
chronize any m × n array in m + n + max(m,n) − min(r, m − r + 1) −
min(s, n − s + 1) − 1 optimum steps.

1 Introduction

We study a synchronization problem which gives a finite-state protocol for syn-
chronizing a large scale of cellular automata. The synchronization in cellular
automata has been known as firing squad synchronization problem since its de-
velopment, in which it was originally proposed by J. Myhill to synchronize all
parts of self-reproducing cellular automata [7]. The firing squad synchronization
problem has been studied extensively for more than 40 years [1-16]. The present
authors are involved in research on firing squad synchronization algorithms on
two-dimensional (2-D) cellular arrays. Several synchronization algorithms on 2-
D arrays have been proposed, including Grasselli [3], Kobayashi [4], Shinahr [10]
and Szwerinski [12]. To date, the smallest number of cell states for which an
optimum-time synchronization algorithm has been developed is 28 for rectangu-
lar array, achieved by Shinahr [10].

In this paper, several new generalized synchronization algorithms and their
efficient implementations for 2-D cellular arrays will be given. In section 3, we
propose a linear-time 14-state generalized synchronization algorithm that can
synchronize any m × n rectangular array in m + n + max(r + s,m + n − r −
� Corresponding author

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 223–232, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

224 H. Umeo et al.

s + 2)− 4 steps with the general at an arbitrary initial position (r, s). We show
that our linear-time 14-state solution yields an optimum-time synchronization
algorithm in the case where the general is located at one corner. We progressively
reduce the number of internal states of each cellular automaton on rectangular
arrays, achieving fourteen states. In section 4, we propose a new generalized
optimum-time synchronization scheme that can synchronize any m× n array in
m + n + max(m,n)−min(r,m− r + 1)−min(s, n− s + 1)− 1 optimum steps.
The design scheme is based on freezing-thawing technique developed in Umeo
[15]

1 2 3 n

1

2

3

m

...

...

...

...

..
.

..
.

..
.

..
.

C11 C12 C13 C1n

C21 C22 C23

C31 C32

C2n

C33 C3n

Cm1 Cm2 Cm3 Cmn

4

..
.

C14

C24

C34

Cm4

...

Fig. 1. A two-dimensional cellular automaton.

2 Firing Squad Synchronization Problem

Figure 1 shows a finite two-dimensional (2-D) cellular array consisting of m× n
cells. Each cell is an identical (except the border cells) finite-state automaton.
The array operates in lock-step mode in such a way that the next state of each
cell (except border cells) is determined by both its own present state and the
present states of its north, south, east and west neighbors. All cells (soldiers),
except the north-west corner cell (general), are initially in the quiescent state at
time t = 0 with the property that the next state of a quiescent cell with quiescent
neighbors is the quiescent state again. At time t = 0, the north-west corner cell
C1,1 is in the fire-when-ready state, which is the initiation signal for synchronizing
the array. The firing squad synchronization problem is to determine a description
(state set and next-state function) for cells that ensures all cells enter the fire
state at exactly the same time and for the first time. The set of states must be
independent of m and n. We call the synchronization problem normal, when the
initial position of the general is restricted to north-west corner of the array. In
section 3 and 4 we consider a generalized firing squad synchronization problem,
in which the general can be initially located at any position on the array. As

New Generalized Synchronization Algorithms for 2-D Arrays 225

for the normal synchronization problem, several algorithms have been proposed,
including Beyer [2], Grasselli [3], Kobayashi [4], Shinahr [10], Szwerinski [12] and
Umeo, Maeda and Fujiwara [13]. Umeo, Maeda and Fujiwara [13] presented a
6-state two-dimensional synchronization algorithm that fires any m×n arrays in
2(m+n)− 4 steps. The algorithm is slightly slower than the optimum ones, but
the number of internal states is considerably smaller. Beyer [2] and Shinahr [10]
presented an optimum-time synchronization scheme in order to synchronize any
m×n arrays in m+n+max(m,n)−3 steps. To date, the smallest number of cell
states for which an optimum-time synchronization algorithm has been developed
is 28 for rectangular array, achieved by Shinahr [10]. On the other hand, it has
been an only one algorithm that Szwerinski [12] proposed an optimum-time
generalized 2-D firing algorithm with 25,600 internal states.

C1 C2 C3 C4 Cn Cn+1 Cr+n-1 Cm+n-1

C1 2

C1 3

C1 4

C1 s

C21

C2 2

C23

C2 4

C2 s

C1n

C2 n

Cr 1

Cr 2

Cr 4

Cr s

Cr n

Cm 2

Cm 3

Cm 4

Cm s

Cm n

C1 1

Cm 1

Cr 3

g
1

g
2

g
3

g
4

g
m+n-1

g
n+1

g
r+n-1

g
n

g
r+s-1

Cr+s-1

Cr+s-n n

Fig. 2. Generalized correspondence between 1-D and 2-D cellular arrays.

3 A Generalized Linear-Time Synchronization Algorithm

Now we consider a generalized firing squad synchronization problem, in which the
general can be initially located at any position on the array. Before presenting

226 H. Umeo et al.

C-(k-1) C0 Cn-1

1

1

1

1

Area Q

t = 0

(a)

t = 2k-2

t = k-1

t = n+k-2

t = n+k

 +max(k,n)-3

t = n-1

1 2 3 4 5 6 7 8 9 10 11 1213
0 Q Q Q R Q Q Q Q Q Q Q Q Q
1 Q Q < G > Q Q Q Q Q Q Q Q
2 Q < Q G Q > Q Q Q Q Q Q Q
3 W Q Q G Q Q > Q Q Q Q Q Q
4 W] Q G Q Q Q > Q Q Q Q Q
5 W]] G Q Q Q Q > Q Q Q Q
6 W] A N Q Q Q Q Q > Q Q Q
7 W] H] H Q Q Q Q Q > Q Q
8 W] H] R > Q Q Q Q Q > Q
9 W] H Q R H > Q Q Q Q Q W

10 W] R H R H N > Q Q Q [W
11 W] R H R] H H > Q [[W
12 W] R H H] H H N [H [W
13 W] R H H] H Q [Q A [W
14 W] R H H] R [H A R [W
15 W] R H H Q W Q A A R [W
16 W] R H Q [W] Q A R [W
17 W] R] [[W]] [R [W
18 W] H W H [W] H W A [W
19 W] [W] [W] [W] [W
20 W W W W W W W W W W W W W
21 F F F F F F F F F F F F F

(b)

Fig. 3. Time-space diagram for generalized optimum-step firing squad synchro-
nization algorithm (Fig. 3(a)) and snapshots for a 12-state implementation of
generalized firing squad synchronization algorithm with the property Q on 13
cells with a general on C4 (Fig. 3(b)).

the algorithm, we propose a simpler mapping scheme, which is different from
the previous one, for embedding one-dimensional generalized synchronization
algorithms onto two-dimensional arrays. Consider a 2-D array of size m×n. We
divide mn cells into m+n− 1 groups gk, 1 ≤ k ≤ m + n− 1, defined as follows.

gk = {Ci,j|(i− 1) + (j − 1) = k − 1}, i.e.,

g1 = {C1,1}, g2 = {C1,2,C2,1}, g3 = {C1,3,C2,2,C3,1}, . . . , gm+n−1 = {Cm,n}.
Figure 2 shows the division into m + n− 1 groups.
Property Q: We say that a generalized firing algorithm has a property Q, where
any cell, except the general Ck, keeps a quiescent state in the zone Q of the
time-space diagram shown in Fig. 3(a).

The one-dimensional generalized firing squad synchronization algorithm with
the property Q can be easily embedded onto two-dimensional arrays with a small
overhead. Fig. 3(b) shows snapshots of our 12-state optimum-time generalized
firing squad synchronization algorithm with the property Q.
[Theorem 1] There exists a 12-state one-dimensional CA with the property Q
which can synchronize n cells in exactly optimum n−2+max(k, n−k+1) steps,
where the general is located on Ck.

For any 2-D array M of size m×n with the general at Cr,s, where 1 ≤ r ≤ m,
1 ≤ s ≤ n, there exists a corresponding 1-D cellular array N of length m+n− 1
with the general at Cr+s−1 such that the configuration of N can be mapped on

New Generalized Synchronization Algorithms for 2-D Arrays 227

M , and M fires if and only if N fires. Let St
i , S

t
i,j and St

gi
denote the state of

Ci, Ci,j at step t and the set of states of the cells in gi at step t, respectively.
Then, we can establish the following lemma.
[Lemma 2] The following two statements hold:

1. For any integer i and t such that 1 ≤ i ≤ m+ n− r − s+ 1, r + s+ i− 3 ≤
t ≤ T (m+ n− 1, r + s− 1), ‖ St

gi
‖= 1 and St

gi
= St

i . That is, all cells in gi

at step t are in the same state and it is equal to St
i , where the state in St

gi

is simply denoted by St
gi

.
2. For any integer i and t such that m + n − r − s + 2 ≤ i ≤ m + n − 1,

2m+ 2n− r − s− i− 1 ≤ t ≤ T (m+ n− 1, r+ s− 1), ‖ St
gi
‖= 1 and St

gi
=

St
i .

Step:0
1 2 3 4 5 6 7 8

1 Q Q Q Q Q Q Q Q

2 Q Q R Q Q Q Q Q

3 Q Q Q Q Q Q Q Q

4 Q Q Q Q Q Q Q Q

5 Q Q Q Q Q Q Q Q

6 Q Q Q Q Q Q Q Q

Step:1
1 2 3 4 5 6 7 8

1 Q Q < Q Q Q Q Q

2 Q < G > Q Q Q Q

3 Q Q > Q Q Q Q Q

4 Q Q Q Q Q Q Q Q

5 Q Q Q Q Q Q Q Q

6 Q Q Q Q Q Q Q Q

Step:2
1 2 3 4 5 6 7 8

1 Q < Q G Q Q Q Q

2 < Q G Q > Q Q Q

3 Q G Q > Q Q Q Q

4 Q Q > Q Q Q Q Q

5 Q Q Q Q Q Q Q Q

6 Q Q Q Q Q Q Q Q

Step:3
1 2 3 4 5 6 7 8

1 W Q Q G Q Q Q Q

2 Q Q G Q Q > Q Q

3 G1 G Q Q > Q Q Q

4 Q G2 Q > Q Q Q Q

5 Q Q > Q Q Q Q Q

6 Q Q Q Q Q Q Q Q

Step:4
1 2 3 4 5 6 7 8

1 W] Q G Q Q Q Q

2] Q G Q Q Q > Q

3 Q G Q Q Q > Q Q

4 G Q Q Q > Q Q Q

5 Q Q Q > Q Q Q Q

6 Q Q > Q Q Q Q Q

Step:5
1 2 3 4 5 6 7 8

1 W]] G Q Q Q Q

2]] G Q Q Q Q >

3] G Q Q Q Q > Q

4 G Q Q Q Q > Q Q

5 Q Q Q Q > Q Q Q

6 Q Q Q > Q Q Q Q

Step:6
1 2 3 4 5 6 7 8

1 W] A N Q Q Q Q

2] A N Q Q Q Q Q

3 A N Q Q Q Q Q >

4 N Q Q Q Q Q > Q

5 Q Q Q Q Q > Q Q

6 Q Q Q Q > Q Q Q

Step:7
1 2 3 4 5 6 7 8

1 W] H] H Q Q Q

2] H] H Q Q Q Q

3 H] H Q Q Q Q Q

4] H Q Q Q Q Q >

5 H Q Q Q Q Q > Q

6 Q Q Q Q Q > Q Q

Step:8
1 2 3 4 5 6 7 8

1 W] H] R > Q Q

2] H] R > Q Q Q

3 H] R > Q Q Q Q

4] R > Q Q Q Q Q

5 R > Q Q Q Q Q >

6 > Q Q Q Q Q > Q

Step:9
1 2 3 4 5 6 7 8

1 W] H Q R H > Q

2] H Q R H > Q Q

3 H Q R H > Q Q Q

4 Q R H > Q Q Q Q

5 R H > Q Q Q Q Q

6 H > Q Q Q Q Q W

Step:10
1 2 3 4 5 6 7 8

1 W] R H R H N >

2] R H R H N > Q

3 R H R H N > Q Q

4 H R H N > Q Q Q

5 R H N > Q Q Q [

6 H N > Q Q Q [W

Step:11
1 2 3 4 5 6 7 8

1 W] R H R] H H

2] R H R] H H >

3 R H R] H H > Q

4 H R] H H > Q [

5 R] H H > Q [[

6] H H > Q [[W

Step:12
1 2 3 4 5 6 7 8

1 W] R H H] H H

2] R H H] H H N

3 R H H] H H N [

4 H H] H H N [H

5 H] H H N [H [

6] H H N [H [W

Step:13
1 2 3 4 5 6 7 8

1 W] R H H] H Q

2] R H H] H Q [

3 R H H] H Q [Q

4 H H] H Q [Q A

5 H] H Q [Q A [

6] H Q [Q A [W

Step:14
1 2 3 4 5 6 7 8

1 W] R H H] R [

2] R H H] R [H

3 R H H] R [H A

4 H H] R [H A R

5 H] R [H A R [

6] R [H A R [W

Step:15
1 2 3 4 5 6 7 8

1 W] R H H Q W Q

2] R H H Q W Q A

3 R H H Q W Q A A

4 H H Q W Q A A R

5 H Q W Q A A R [

6 Q W Q A A R [W

Step:16
1 2 3 4 5 6 7 8

1 W] R H Q [W]

2] R H Q [W] Q

3 R H Q [W] Q A

4 H Q [W] Q A R

5 Q [W] Q A R [

6 [W] Q A R [W

Step:17
1 2 3 4 5 6 7 8

1 W] R] [[W]

2] R] [[W]]

3 R] [[W]] [

4] [[W]] [R

5 [[W]] [R [

6 [W]] [R [W

Step:18
1 2 3 4 5 6 7 8

1 W] H W H [W]

2] H W H [W] H

3 H W H [W] H W

4 W H [W] H W A

5 H [W] H W A [

6 [W] H W A [W

Step:19
1 2 3 4 5 6 7 8

1 W] [W] [W]

2] [W] [W] [

3 [W] [W] [W

4 W] [W] [W]

5] [W] [W] [

6 [W] [W] [W

Step:20
1 2 3 4 5 6 7 8

1 W W W W W W W W

2 W W W W W W W W

3 W W W W W W W W

4 W W W W W W W W

5 W W W W W W W W

6 W W W W W W W W

Step:21
1 2 3 4 5 6 7 8

1 F F F F F F F F

2 F F F F F F F F

3 F F F F F F F F

4 F F F F F F F F

5 F F F F F F F F

6 F F F F F F F F

Fig. 4. Snapshots of our 14-state linear-time generalized firing squad synchro-
nization algorithm on rectangular arrays.

Based on the 12-state generalized 1-D algorithm given above, we obtain the
following 2-D generalized synchronization algorithm that synchronizes any 2-D
array of size m × n in m + n − 1 − 2 + max(r + s − 1,m + n − r − s + 1) =
m+n+max(r+s,m+n−r−s+2)−4 steps. Two additional states are required
in our construction (details omitted). Szwerinski [12] also proposed an optimum-
time generalized 2-D firing algorithm with 25,600 internal states that fires any

228 H. Umeo et al.

t=0
n

t=t1

t=t2

1 2

t

s

1/1

t=t0

t=max(s, n-s+1)

t=t0+n-2+(t2-t1)/2

 +max(s, n-s+1)

1/1

1/1

1/1

Fig. 5. Time-space diagram for delayed optimum-time generalized synchroniza-
tion algorithm.

m×n array in m+n+max(m,n)−min(r,m−r+1)−min(s, n−s+1)−1 steps,
where (r, s) is the general’s initial position. Our 2-D generalized synchronization
algorithm is max(r+s,m+n−r−s+2)−max(m,n)+min(r,m−r+1)+min(s, n−
s+ 1)− 3 steps larger than the optimum algorithm proposed by Szwerinski [12].
However, the number of internal states required to yield the firing condition is the
smallest known at present. Snapshots of our 14-state generalized synchronization
algorithm running on a rectangular array of size 6× 8 with the general at C3,4

are shown in Fig. 4.
[Theorem 3] There exists a 14-state 2-D CA that can synchronize any m × n
rectangular array in m + n + max(r + s,m + n− r − s + 2)− 4 steps with the
general at an arbitrary initial position (r, s).

Our linear-time synchronization algorithm is interesting in that it includes an
optimum-step synchronization algorithm as a special case where the general is
located at the north-east corner. By letting r = 1, s = n, we get m+n+max(r+
s,m+n−r−s+2)−4 = m+n+max(n+1,m+1)−4 = m+n+max(m,n)−3.
Thus the algorithm is a time-optimum one. Then, we have:
[Theorem 4] There exists a 14-state 2-D CA that can synchronize any m × n
rectangular array in m + n + max(m,n)− 3 steps.

New Generalized Synchronization Algorithms for 2-D Arrays 229

4 A Generalized Time-Optimum Firing Squad
Synchronization Agorithm

In this section we propose a novel optimum-time generalized synchronization
scheme for two-dimensional rectangular arrays of size m × n with the general
being located at any position (r, s) on the array. The following observation is a
useful technique for delaying the generalized synchronization on one-dimensional
arrays.

m

r

t = r-1

t = m-r

t = 3r-3

t = 2m-r-1

x
y

t = 0

t = r-x

t = r+x-2

t = 3r-x-2

t = 2m-x-r

t = 2r-2

t = y-r

t = 2m-y-r

t = 2m-2r

1/1

1/1

1/1

1/1

1/1

Fig. 6. Time-space diagram for delaying row synchronization.

[Observation 5] Let A be any one-dimensional cellular automaton that runs
a generalized T (s, n)-step synchronization algorithm on n cells with an initial
general on Cs(1 ≤ s ≤ n) and t0, t1, t2, � be any integer satisfying the following
conditions such that Δt = t2 − t1 = 2�, � ≥ 1, t2 > t1 ≥ t0 ≥ 0 and t1 +
t2 − 2t0 ≤ 2T (s, n)− 2max(s, n− s + 1) + 2. We also assume that three special
signals are given to cell Cs at step t = t0, t1, and t2. These signals play an
important role of initializing the generalized synchronization process, starting
the delayed operation, and stopping the delayed operation, respectively. Then,
we can construct a cellular automaton B that synchronizes the array at time
t = t0 + � + T (s, n). In the case where T (s, n) is an optimum time complexity
such that T (s, n) = n − 2 + max(s, n − s + 1), the constructed B fires at time
t = t0 + � + n − 2 + max(s, n − s + 1). Thus the synchronization operation is
delayed for � steps. Figure 5 is a time-space diagram for the delayed optimum-

230 H. Umeo et al.

time generalized synchronization algorithm operating on n cells. In the darker
area of the diagram, each cell simulates the operation of A at speed 1/2 by
repeating a simulate-one-step of A then keep-the-state operations alternatively
at each step.

Without loss of generality, we assume that m ≤ n, 1 ≤ r < 3m/24 and
1 ≤ s < 3n/24. We regard an array of size m × n as consisting of independent
m rows of length n. An optimum-time generalized synchronization algorithm
with a general at Ci,s(1 ≤ i ≤ m) is used for the synchronization of the i-th
row. We call the operations row-synchronization. To fire all rows simultaneously,
an efficient timing control scheme shown in Fig. 6 is developed. Figure 6 is a
time-space diagram for giving special signals to each cell on the s-column. These
special signals act as a timing t = t0, t1 and t2 stated in [Observation 5]. For
example, the row-synchronization on the y-th (r ≤ y ≤ m) row is started at
time t = t0 = t1 = y − r and the process is delayed from time t = t1 = y − r
to t = t2 = 2m − y − r, shown in the darker area in Fig. 6. Thus � = m − y.
Based on [Observation 5] the y-th row is fired at time t = m + 2n− r − s − 1.
Figure 12 is a time-space diagram for the row-synchronization on the x-th and
y-th row, where 1 ≤ x < r and r ≤ y ≤ m. The readers can see how all rows are
synchronized at time t = m + 2n− r − s− 1.

Thus we have:
[Lemma 6] In the row-synchronization process, all of the rows can be fired
simultaneously at time t = m+2n− r− s− 1 in the case m ≤ n, 1 ≤ r < 3m/24
and 1 ≤ s < 3n/24. In the column-synchronization process, all of the cells take
a firing state prior to the row-synchronization, but the column-synchronization
fails to synchronize.

Symmetrically we get the following lemma in the case where the array is
longer than is wide.
[Lemma 7] In the column-synchronization process, all of the columns can be
fired simultaneously at time t = n + 2m− r − s− 1 in the case m ≥ n, 1 ≤ r <
3m/24 and 1 ≤ s < 3n/24. In the row-synchronization process, all of the cells take
a firing state prior to the column-synchronization, but the row-synchronization
fails to synchronize.

To synchronize the array in optimum-time, the array performs both row- and
column-synchronization operations. Each cell takes a firing state at two different
times. The first one is false and it should be ignored. The second one is a right
firing state. By combining the [Lemmas 6, 7], we can establish the following
theorem.
[Theorem 8] The scheme given above can synchronize any m × n array in
m + n + max(m,n)−min(r,m− r + 1)−min(s, n− s + 1)− 1 optimum steps,
where (r, s) is the general’s initial position.

5 Conclusions

We have proposed several new generalized synchronization algorithms and their
state-efficient implementations for 2-D cellular arrays. The first linear-time algo-

New Generalized Synchronization Algorithms for 2-D Arrays 231

Control Layer

m

r

t = r-1

t = m-r

t = 3r-3

t = 2m-r-1

x
y

t = 0

t = r-x

t = r+x-2

t = 3r-x-2

t = 2m-x-r

t = 2r-2

t = y-r

t = 2m-y-r

t = 2m-2r

t = r-x

t = 0

Synchronization Layer

t = r+s-x-1

t = n+r-s-x

t = 3r+s-x-3

t = n+3r-s-x-2

t=m+2n-r-s-1

t = n+r-s-x-2

t = r+s+x-3

t = 2m-r+s-x-1

t = 2m+n-r-s-x

t = r+x-2

t = 3r-x-2

t = 2m-r-x

n

m

x
rr

s

n
s

t = y-r

t = 0

t = 2m-r-y

Synchronization Layer

t = s-r+y-1

t = n+y-r-s

t=m+2n-r-s-1

t = 2m-r+s-y-1

t = 2m+n-r-s-y

n

m

ys

r

n
s

Fig. 7. Time-space diagram for the row-synchronization on the x-th and y-th row
of a rectangular array of size m×n, where m ≤ n, 1 ≤ r < 3m/24, 1 ≤ s < 3n/24,
1 ≤ x < r and r ≤ y ≤ m.

rithm is based on an efficient mapping scheme, achieving fourteen state operating
in m+n + max(r+s,m+n−r−s+2)−4 steps for any 2-D rectangular array of
size m×n with the general at an arbitrary initial position (r, s), where 1 ≤ r ≤ m,
1 ≤ s ≤ n. The generalized linear-time synchronization algorithm proposed is
interesting in that it includes an optimum-step synchronization algorithm as a
special case where the general is located at one corner. Lastly, we have proposed
a new optimum-time generalized synchronization scheme that can synchronize
any m×n array in m+n+max(m,n)−min(r,m− r+1)−min(s, n− s+1)−1
optimum steps. It is an interesting question that how many states are needed
for its implementation.

References

1. R. Balzer: An 8-state minimal time solution to the firing squad synchronization
problem. Information and Control, vol. 10(1967), pp. 22-42.

2. W. T. Beyer: Recognition of topological invariants by iterative arrays. Ph.D. The-
sis, MIT, (1969), pp. 144.

232 H. Umeo et al.

3. A. Grasselli: Synchronization of cellular arrays: The firing squad problem in two
dimensions. Information and Control, vol. 28(1975), pp. 113-124.

4. K. Kobayashi: The firing squad synchronization problem for two-dimensional ar-
rays. Information and Control, vol. 34(1977), pp. 177-197.

5. J. Mazoyer: A six-state minimal time solution to the firing squad synchronization
problem. Theoretical Computer Science, vol. 50(1987), pp. 183-238.

6. M. Minsky: Computation: Finite and infinite machines. Prentice Hall, (1967), pp.
28-29.

7. E. F. Moore: The firing squad synchronization problem. in Sequential Machines,
Selected Papers (E. F. Moore ed.), Addison-Wesley, Reading MA., (1964), pp. 213-
214.

8. F. R. Moore and G. G. Langdon: A generalized firing squad problem. Information
and Control, vol. 12(1968), pp. 212-220.

9. H. B. Nguyen and V. C. Hamacher: Pattern synchronization in two-dimensional
cellular space. Information and Control, vol. 26(1974), pp. 12-23.

10. I. Shinahr: Two- and three-dimensional firing squad synchronization problems.
Information and Control, vol. 24(1974), pp. 163-180.

11. A. Settle and J. Simon: Smaller solutions for the firing squad. Theoretical Computer
Science, vol. 276(2002), pp.83-109.

12. H. Szwerinski: Time-optimum solution of the firing-squad-synchronization-problem
for n-dimensional rectangles with the general at an arbitrary position. Theoretical
Computer Science, vol. 19(1982), pp. 305-320.

13. H. Umeo, M. Maeda and N. Fujiwara: An efficient mapping scheme for embedding
any one-dimensional firing squad synchronization algorithm onto two-dimensional
arrays. Proc. of the 5th International Conference on Cellular Automata for Re-
search and Industry, LNCS 2493, Springer-Verlag, pp.69-81(2002).

14. H. Umeo, M. Hisaoka, K. Michisaka, K. Nishioka and M. Maeda: Some generalized
synchronization algorithms and their implementations for a large scale cellular
automata. Proc. of the Third International Conference on Unconventional Models
of Computation, UMC 2002, LNCS 2509, Springer-Verlag, pp.276-286(2002).

15. H. Umeo: A simple design of time-efficient firing squad synchronization algo-
rithms with fault-tolerance. IEICE Trans. on Information and Systems, vol.E-
87-D, No.3(2004), pp.733-739.

16. A. Waksman: An optimum solution to the firing squad synchronization problem.
Information and Control, vol. 9(1966), pp. 66-78.

Register Complexity of LOOP-, WHILE-, and

GOTO-Programs

Markus Holzer1 and Martin Kutrib2

1 Institut für Informatik, Technische Universität München,
Boltzmannstraße 3, D-85748 Garching bei München, Germany

holzer@informatik.tu-muenchen.de
2 Institut für Informatik, Universität Gießen,

Arndtstraße 2, D-35392 Gießen, Germany
kutrib@informatik.uni-giessen.de

Abstract. We study the register complexity of LOOP-, WHILE-, and GOTO-
programs, that is the number of registers (or variables) needed to com-
pute certain unary (partial) functions from the non-negative integers
to the non-negative integers. It turns out that the hierarchy of LOOP-
computable (WHILE-, and GOTO-computable, respectively) functions f :
N0 → N0 (partial functions f : N0 ↪→ N0, respectively) that is induced
by the number of registers collapses to a fixed level. In all three cases
the first levels are separated. Our results show that there exist universal
WHILE- and GOTO-programs with a constant number of registers.

1 Introduction

Computability theory dates back to the beginning of the last century and is
at the heart of theoretical computer science. From the early days the field has
grown rapidly and has initiated many new branches in computer science the-
ory, like abstract complexity theory, domain theory and λ-calculus, etc. Several
characterizations of computable functions—see, e.g., [1,6,9,10,11,12]—have been
proposed and all of them were shown to be equivalent. Here we are interested
in the programming language approach to computability by WHILE- and GOTO-
programs as proposed in, e.g., [2].

It is known that WHILE- and GOTO-programs precisely characterize the μ-
recursive or partial recursive functions and, hence, are universal in the computa-
tional sense. Primitive recursive functions are also representable by a program-
ming language approach, namely by so called LOOP-programs [7]. Compared to
the WHILE-statement, where the body is evaluated as long as the condition on the
specified register or variable is true, a LOOP-statement evaluates its body m times,
if the specified register holds the value m before entering the loop. Therefore,
LOOP-programs can only compute total functions, and thus do not encompass ev-
erything that we think of as computable. Nevertheless, they form an important
class and many of these functions are normally studied in number theory.

A natural measure of complexity for LOOP-programs is the nesting depth
of the iteration statements. It induces an infinite hierarchy of function classes,

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 233–244, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

234 M. Holzer and M. Kutrib

which coincides with the Axt and Grzegorczyk classes [4] for large enough nesting
depths. An immediate consequence of the nesting depth non-collapse result is
that there are no universal LOOP-programs for the family of primitive recursive
functions.

In this paper we study another natural measure of complexity for all three
program types, namely the number of registers needed to compute a function.
It turns out that the hierarchies of function classes induced by the number of
registers collapse to fixed levels for LOOP-, WHILE- and GOTO-programs. This nicely
contrasts the situation for the nesting depth hierarchy of LOOP-programs. In case
of GOTO- and WHILE-programs we can show that three register are sufficient to
simulate every partial recursive function. For LOOP-programs four registers are
sufficient to simulate any LOOP-program with an arbitrary number of registers.
Whether these results are optimal have been left open. Nevertheless, the first
levels of the register hierarchies are separated.

The paper is organized as follows: The next section contains preliminaries.
Section 3 is devoted to register complexity of LOOP-programs and in Section 4 we
deal with WHILE- and GOTO-programs, showing that in all three cases the hierar-
chies on the number of registers collapse to fixed levels. Finally, we summarize
our results and discuss some open questions in Section 5.

2 Definitions

We assume the reader to be familiar with the basic notions of recursion and
computability theory as contained in [5].

Let N0 denote the non-negative integers (natural numbers). A WHILE-program
is a finite sequence of commands for changing natural numbers stored in registers.
There is no limit to the size of an integer which may be stored in a register. In
general, there is also no limit to the number of registers to which a program
may refer, although any given program will refer to only a fixed number of
registers. The registers are identified by names. The syntax of WHILE-programs
is as follows:

〈program〉 ::= 〈command〉
| 〈command〉; 〈program〉

〈command〉 ::= 〈expression〉
| WHILE 〈condition〉 DO 〈program〉 OD

〈expression〉 ::= 〈variable〉 := 0
| 〈variable〉 := 〈variable〉+ 1
| 〈variable〉 := 〈variable〉 − 1

}
(both variable names
must be the same)

〈condition〉 ::= 〈variable〉 = 0
| 〈variable〉 �= 0

〈variable〉 ::= x | y | . . .

The operations of assignment, successor, and predecessor change the contents
of registers or variables. In case of initialization (successor, predecessor, respec-
tively) the content of the register or variable is set to zero (is incremented by

Register Complexity of LOOP-, WHILE-, and GOTO-Programs 235

one, decremented by one, respectively). Note that the predecessor of a register
that contains zero remains zero—this is the modified subtraction. The rest of
the semantics, in particular the WHILE-statement is natural and so not presented
here. Observe, that assignments of the form, e.g., x := y + 1, are not allowed
and because of the conditions = 0 and �= 0, a register content can be checked
to be zero or non-zero, respectively. In the forthcoming, the content (value) of a
register x will be referred to as x.

A WHILE-program P computes or defines a partial function ϕP : N0 ↪→ N0

as follows: Initially the input n is stored in the input register and all other
registers are initialized with zero. When P terminates, then the value of ϕP on
input n is given by the value of the output register. If not otherwise stated,
we set x (or c1) to be the input and output register. If the program does not
terminate, then ϕP (n) is undefined. For convenience we simply write ϕ instead
of ϕP . A partial function f : N0 ↪→ N0 has WHILE-program register complexity k,
for some k ≥ 1, if and only if there is a WHILE-program P using k registers such
that f(n) = ϕP (n), for all n in N0. The family of partial functions that are
WHILE-computable with register complexity k is denoted by WHILEk. Moreover,
WHILE :=

⋃
k∈N WHILEk is the class of all partial functions.

An example of a WHILE-program, called non-terminate, that defines the
overall undefined function is:

x1 := 0; x1 := x1 + 1;
WHILE x1 �= 0 DO x1 := x1 + 1 OD

The syntax of LOOP-programs is similarly defined as for WHILE-programs,
except that the command LOOP 〈variable〉 DO 〈program〉 OD is used instead of
WHILE 〈condition〉 DO 〈program〉 OD. The semantics of the LOOP-statement is

as follows: The body of the LOOP-statement is evaluated m times, if the specified
register holds value m before entering the loop. Observe, that LOOP-programs
always define total functions. The family of functions that are LOOP-computable
with register complexity k is denoted by LOOPk, and LOOP :=

⋃
k∈N LOOPk.

In the remainder of this section we discuss the syntax of GOTO-programs.
Sometimes it is convenient for programming to use a lower-level flow chart syn-
tax, in which a program is a sequence M1 : P1; M2 : P2; . . . ;Mn : Pn of labeled
(and unlabeled) commands, executed sequentially except for explicitly redirected
control transfer. Commands and labels are of the form:

〈command〉 ::= 〈pcommand〉
| 〈label〉 : 〈pcommand〉

〈pcommand〉 ::= 〈expression〉
| GOTO 〈label〉
| IF 〈condition〉 GOTO 〈label〉

〈label〉 ::= M1 |M2 | . . .

The GOTO-equivalent of the non-terminate program is M1 : GOTO M1.
Though the name of the input register may not appear in the source code, it
still counts as a used register. Therefore, the GOTO-program register complexity

236 M. Holzer and M. Kutrib

of the above shown GOTO-program equals 1. Finally, we denote the family of
partial functions with GOTO-program register complexity k by GOTOk and set
GOTO :=

⋃
k∈N GOTOk.

By definition of LOOPk, WHILEk, and GOTOk we have the following trivial chain
of inclusions: LOOP1 ⊆ LOOP2 ⊆ · · · ⊆ LOOPi ⊆ LOOPi+1 ⊆ · · · ⊆ LOOP, which also
holds for WHILE-computable and GOTO-computable functions.

3 LOOP-Programs

As already mentioned, LOOP-programs in general are equivalent in computational
power to primitive recursive functions. In the following we show that the register
complexity of LOOP-programs can always be reduced to four. The main idea is
similar to that presented in [8], where it is shown that a 2-counter automaton is
universal.

Theorem 1. Let f : N0 → N0 be a function that is computable by a LOOP-pro-
gram P with an arbitrary number of registers. Then there is a LOOP-program P ′

with register complexity four, such that ϕP ′(n) = f(n), for all n ∈ N0.

Proof. The idea for the simulation of a LOOP-program P with an arbitrary num-
ber of registers by a LOOP-program with a constant number of registers is to
encode the values of all used registers into one register and to update this en-
coding appropriately according to the instructions from the original program P .
Let k be the register complexity of the LOOP-program P . The values of the reg-
ister x1, x2, . . . , xk of P will be encoded by the number p

x1
1 p

x2
2 . . . p

xk

k , where
the pi’s, for 1 ≤ i ≤ k, are mutually distinct prime numbers. Before we con-
struct a LOOP-program with four registers we need some code-fragments: The
sub-program power-p reads as follows.

power-p(x, y): {computes px for some constant p}
y := 0; y := y + 1;
LOOP x DO multiply-p(y) OD;
x := 0; LOOP y DO x := x + 1 OD;

where the program code for multiply-p is:

multiply-p(x): {computes p · x for some constant p}
LOOP x DO x := x + p− 1 OD;

divide-p(x, y, z): {computes x
p if p divides x}

y := 0; LOOP x DO y := y + 1 OD;
div-p(y, z); multiply-p(y);
z := 0; LOOP x DO z := z + 1 OD;
equals(y, z);
LOOP y DO div-p(x, y) OD;

computes x
p on input x, if p divides x. In this case, register y has also the

content x
p which is always greater than zero. If otherwise p does not divide x,

the input is not changed and register y has content zero. The program codes for
div-p and equals read as:

Register Complexity of LOOP-, WHILE-, and GOTO-Programs 237

div-p(x, y): {computes)x
p * for some constant p}

y := 0; x := x + 1;
LOOP x DO
x := x− p; {implement it by iterated subtraction}
LOOP x DO y := y + 1 OD;
x := x− 1;
LOOP x DO y := y − 1 OD;
x := x + 1

OD;
x := 0; LOOP y DO x := x + 1 OD;

and

equals(x, y): {compares x and y under

LOOP x DO y := y − 1 OD; the assumption that x ≤ y}
x := 0; x := x + 1;
LOOP y DO x := 0 OD;

computes 1 if x = y, and 0 if x < y. Finally, we need

extract-p(x, y, z, r): {computes largest n such

r := 0; that pn divides x exactly}
LOOP x DO

divide-p(x, y, z);
r := r + 1; z := 0;
equals(y, z);
LOOP y DO r := r − 1 OD

OD;

that computes on input x the largest n such that pn divides x exactly. The result
is stored in register r.

Now we are ready to construct a LOOP-program with registers x, y, z, r from
the given program P as follows: First we encode the original input to its appro-
priate form px1

1 , i.e., we start our program code with power-p(x, y); where the
result is stored in register x. Then each command of P is rewritten as follows—we
distinguish four cases:

(1) Command xi := 0; is replaced by LOOP xi DO xi := xi − 1 OD; in the orig-
inal program code—thus, this case is reduced to cases below.

(2) Command xi := xi + 1; is simulated by multiply-p(x); where prime pi is
used for p.

(3) Command xi := xi − 1; is simulated by divide-p(x, y, z); where prime pi

is used for p.
(4) For the command LOOP xi DO Q OD; one has to extract the value of xi from

the encoding. The program line LOOP xi DO Q OD; is simulated by

extract-p(x, y, z, r);
LOOP r DO multiply-p(x) OD;
LOOP r DO Q′ OD;

238 M. Holzer and M. Kutrib

where prime pi is used for p and Q′ is the program that is built by induction
from Q.

Finally, we have to reconstruct the value of the output register. To this end, we
run extract-p(x, y, z, r); x := 0; LOOP r DO x := x + 1 OD; where prime p1

is used for p. This completes the description of the program and shows that any
LOOP-program can be simulated by another LOOP-program with four registers
only. ��

Corollary 2. LOOP = LOOP4.

The following lemma classifies the functions that belong to LOOP1. Recall
that in terms of orders of magnitude, function f : N0 → N0 is a lower bound of
the set Ω(f) = {g : N0 → N0 | ∃ n0, c ∈ N : ∀ n ≥ n0 : c · g(n) ≥ f(n)}.

Lemma 3. Let P be a LOOP-program with one register. Then there exist con-
stants a ≥ 1, b ∈ Z, and c > 1 such that either (i) ϕP (n) ≤ c, (ii) ϕP (n) = an+b,
or (iii) ϕP (n) ∈ Ω(cn).

Proof. The statement is shown by induction on the structure of LOOP-programs.

(1) Let P be one of the expressions x := x+1, x := x−1, or x := 0, respectively.
Then it follows immediately ϕP (n) = an+ b, for a = b = 1, ϕP (n) = an+ b,
for a = 1, b = −1, or ϕP (n) ≤ c, for c = 0, respectively.

(2) Let P be the command sequence P1;P2, where the assertion has been shown
for ϕP1 and ϕP2 . In general, ϕP (n) is the composition of ϕP1 with ϕP2 . We
have to distinguish three sub-cases.
(a) If ϕP1(n) ≤ c, then ϕP is approximated by applying ϕP2 to c, i.e.,

ϕP (n) ≤ ϕP2(c). Therefore, ϕP (n) ≤ c′, for some constant c′.
(b) For the case ϕP1 (n) is of form a1n + b1, the function ϕP2 determines

the order of ϕP . In particular, (i) if ϕP2 (n) ≤ c, then ϕP (n) ≤ c, (ii) if
ϕP2(n) = a2n+ b2, then ϕP (n) = a2(a1n+ b1) + b2 = a2a1n+ a2b1 + b2.
Setting a = a2a1 and b = a2b1 + b2 we obtain ϕP (n) = an + b. (iii)
If ϕP2(n) is of order Ω(cn), then ϕP (n) is of order Ω(ca1n+b1). Since
a1 ≥ 1, this is of order Ω(cn) also.

(c) Now let ϕP1(n) be of order Ω(cn
1). If ϕP2(n) ≤ c, then ϕP (n) ≤ c. If

ϕP2(n) = an + b, then we have ϕP (n) = aϕP1(n) + b. Since a ≥ 1 this
is of order Ω(cn

1) also. Finally, let ϕP2(n) be of order Ω(cn
2). Clearly,

ϕP (n) = ϕP2(ϕP1 (n)) is of order Ω(cn
1).

(3) Let P be the command LOOP x DO P1 OD, where the assertion has been shown
for ϕP1 . Let the value of x be n. Then in general, we obtain ϕP (n) to be the
n-fold composition of ϕP1 (n), i.e., ϕP (n) = ϕP1(ϕP1(. . . ϕP1(n))). Again, we
distinguish three sub-cases as follows.
(a) If ϕP1(n) ≤ c, then ϕP ≤ c′, for some c′ ≥ 1, follows immediately.
(b) For the case ϕP1(n) = an+b we derive ϕP (n) = ann+an−1b+· · ·+ab+b.

We distinguish three cases: (i) If a = 1 and b ≥ 0, this equals n + bn =
(b + 1)n, and for a′ = b + 1 and b′ = 0 we obtain ϕP (n) = a′n + b′. (ii)

Register Complexity of LOOP-, WHILE-, and GOTO-Programs 239

If a = 1 and b < 0, the result is n− bn. Since b is an integer, ϕP (n) = 0
follows. (iii) Finally, if a > 1, the result is clearly at least of order Ω(an),
for all b ∈ Z.

(c) The last case concerns ϕP1(n) of order Ω(cn). The n-fold composition
of ϕP1 does not decrease the order of magnitude in this case. Thus, ϕP (n)
is of order Ω(cn). ��

As an immediate consequence of the previous lemma, we can separate the
first levels of the LOOP-program register hierarchy.

Theorem 4. LOOP1 ⊂ LOOP2

Proof. As witness function consider f(n) = n2. By Lemma 3 function f cannot
be computed by any LOOP-program with one register. It is straightforward to
construct a LOOP-program P with two registers, such that ϕP = f . ��

So we have LOOP1 ⊂ LOOP2 ⊆ LOOP3 ⊆ LOOP4 = · · · = LOOPi = · · · = LOOP.

4 WHILE- and GOTO-Programs

This section is devoted to the study of the register hierarchy of WHILE- and GOTO-
programs. Both program types are known to characterize all partial recursive
functions. Before we continue with our investigations, we have to define counter
machines, since they will be used for our WHILE- and GOTO-program simulations.

It is well known that there exist universal machines with two counters [8]. The
input to those machines is supplied on an extra input tape. The counter machines
as defined below get their input in one of the counters. For this mode it is an
open question and unlikely that there exists a universal two-counter machine [3].
The problem is to encode the input x to 2x and to decode the output 2x to x. If
this would be possible with only two counters, then there would be a universal
two counter machine. On the other hand, this task is trivial for three counters.

A k-counter machine (without extra input tape) is a finite state device
equipped with k ∈ N counters that may have values from the natural num-
bers. The machine can perform zero-tests on its counters. A counter can be
incremented by 1, decremented by 1, or left unchanged. So, the instructions of
the machine are given by a partial mapping δ : S × {0, 1}k → S × {+, n,−}k,
where S denotes the finite set of states, the results of the zero-tests are 0 or 1,
and +, n, − denote the operations on the counters. Depending on the current
state and the contents of the counters, the machine changes to a new state
and possibly manipulates the counters. Initially, the input is stored in the first
counter, the machine is in the distinguished initial state, and the other coun-
ters are zero. The computation stops when the mapping δ is not defined for the
current situation. In this case we say that the computation result is defined and
is stored in the first counter. So, a k-counter machine A computes a (partial)
function γA : N0 ↪→ N0.

240 M. Holzer and M. Kutrib

4.1 WHILE-Programs

Theorem 5. Let f : N0 ↪→ N0 be a function that is computable by a WHILE-
program with an arbitrary number of registers. Then there is a WHILE-program P
with register complexity three, such that ϕP (n) = f(n), for all n ∈ N0.

Proof. It is sufficient (1) to encode the original input x to 2x and to decode the
output 2x to x, and (2) to simulate a two-counter machine with a WHILE-program
using three registers. In order to show (2), let A be a two-counter machine with
state set S = {s1, s2, . . . , sn}, for some n ≥ 1, and initial state s1. The following
while program P simulates A, where registers c1 and c2 are used to store the
values of the counters. The third register is denoted by z. Initially, P starts with
the input value stored in register c1, and c2 and z are set to 0.

z := z + 1; {z is set to 1 referring to s1}
WHILE z �= 0 DO
z := z − 1; WHILE z = 0 DO P1 OD; {P1 simulates state s1}
...

z := z − 1; WHILE z = 0 DO Pn OD {Pn simulates state sn}
OD

Apart from simulating state si, the sub-program Pi has to set the register z,
such that the correct successor state of si is simulated during the next loop. The
following sub-program Pi simulates state si. It starts with the current counter
values stored in registers c1 and c2 and z are decremented to 0.

WHILE c1 = 0 DO
z := z + 2; {if c1 = 0, then z := 2}
c1 := c1 + 1 {terminates the loop}

OD;
WHILE c2 = 0 DO

z := z + 1; {if c2 = 0, then z := z + 1}
c2 := c2 + 1 {terminates the loop}

OD;

So far, Pi has performed the zero-tests. The value stored in z is interpreted as
follows: z = 0 means c1 > 0, c2 > 0 and neither c1 nor c2 have been incremented
in order to terminate the loop, z = 1 means c1 > 0, c2 = 0 and c2 has been
incremented and must be corrected, z = 2 means c1 = 0, c2 > 0 and c1 has
been incremented, and z = 3 means c1 = 0, c2 = 0 and both c1 and c2 have
been incremented. Let op ∈ {+, n,−} denote the possible manipulations of the
counters cm, m ∈ {1, 2}. For easier writing, +(cm) (−(cm)) denotes cm := cm +1
(cm := cm−1). The notion n(cm) is used for no operation. When the computation
of the two-counter machine continues, we have δ(si, t1, t2) = (sj , op1, op2), for
some 1 ≤ j ≤ n. Otherwise, we assume δ(si, t1, t2) = (s0, n, n). Since for a
state s0 the main loop of program P terminates, P simulates the stop of A
correctly. Sub-program Pi continues as follows:

Register Complexity of LOOP-, WHILE-, and GOTO-Programs 241

WHILE z = 0 DO {c1 > 0, c2 > 0}
op1(c1); op2(c2); {δ(si, 1, 1) = (so, op1, op2)}
z := 3 + n− i + o {n, i and o are constants}

OD;
z := z − 1;

...
z := z − 1;
WHILE z = 0 DO {c1 = 0, c2 = 0}

c1 := c1 − 1; {correction of c1}
c2 := c2 − 1; {correction of c2}
op1(c1); op2(c2); {δ(si, 0, 0) = (sr, op1, op2)}
z := n− i + r {n, i and r are constants}

OD
��

Corollary 6. WHILE = WHILE3, there is a universal while program with three
registers.

In order to separate one from two registers in case of WHILE-programs, we
have the following characterization of total functions that are computable by
WHILE-programs with one register.

Lemma 7. Let P be a WHILE-program with one register. If ϕP is total, then there
are constants n0, c ∈ N0 and d ∈ Z, such that for all n ≥ n0 either ϕP (n) = c
or ϕP (n) = n + d.

Proof. Let P be a WHILE-program with one register x such that ϕP is total. We
observe that each WHILE-command of the form WHILE x �= 0 DO P1 OD can be
replaced by the assignment x := 0. This can be done since either x is 0 and the
WHILE-command is not executed, or x �= 0 and the WHILE-command is executed
until x is 0. We obtain an equivalent program P ′.

If in the command sequence P1; . . . ;Pm of P ′ there appears an assignment
x := 0, say as Pi, then we can delete the commands P1 to Pi−1 safely without
changing ϕP ′ . This transformation is repeated until at most one assignment
x := 0 is left. Again we obtain an equivalent program P ′′, which has the form
P1; . . . ;Pr, where the commands Pi are either x := x + 1, x := x − 1, or a
statement WHILE x = 0 DO P ′

i OD. The only exception is P1 which may also be
x := 0. Set d = u − v, where u is the number of commands x := x + 1 and v is
the number of commands x := x− 1 appearing in the sequence P1; . . . ;Pr.

If P1 is x := 0, then P ′′ computes the result c = ϕP ′′ (0) for all inputs.
Otherwise let n0 = r+ 1. For any input n ≥ n0 none of the WHILE-commands in
P ′′ is executed, since there are only r commands and, thus, x is decremented at
most r times, but the condition is always x = 0. So, for any n ≥ n0 the program
computes the result ϕP ′′(n) = n + d. ��

Theorem 8. WHILE1 ⊂ WHILE2.

Proof. Consider the total function f(n) = 2n as witness. ��

242 M. Holzer and M. Kutrib

4.2 GOTO-Programs

Theorem 9. Let k ∈ N be a constant. A function f : N0 ↪→ N0 is computable
by a GOTO-program with k registers if and only if it is computable by a k-counter
machine.

Proof. Given some GOTO-program P with k registers, the first step of a construc-
tion of an equivalent k-counter machine A is to replace every command of the
form x := 0 by Mi : x := x − 1; Mi+1 : IF x �= 0 GOTO Mi, where Mi,Mi+1

are new labels. The transformed program P ′ is equivalent to P . Without loss of
generality, we may assume that every command in P ′ is labeled, and that the
labels are M1, . . . ,Mr in order of occurence. So, program P ′ has flow chart form
M1 : P1; M2 : P2; . . .Mr : Pr, where Pi, 1 ≤ i ≤ r is a command. Let the
registers be named c1, . . . , ck. Automaton A has one state for every labeled com-
mand, i.e., the state set is S = {s1, . . . sr}. Accordingly, the initial state is s1.
The transition function δ is for t1, . . . , tk ∈ {0, 1}, si, si+1, sp ∈ S, and 1 ≤ j ≤ k
defined as follows:

δ(si, t1, . . . , tk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(si+1, n
j−1 + nk−j) if Pi ≡ cj := cj + 1

(si+1, n
j−1 − nk−j) if Pi ≡ cj := cj − 1

(sp, n
k) if Pi ≡ GOTO Mp

(sp, n
k) if tj = 0 and Pi ≡ IF xj = 0 GOTO Mp

(si+1, n
k) if tj �= 0 and Pi ≡ IF xj = 0 GOTO Mp

(sp, n
k) if tj �= 0 and Pi ≡ IF xj �= 0 GOTO Mp

(si+1, n
k) if tj = 0 and Pi ≡ IF xj �= 0 GOTO Mp

Conversely, let A be a k-counter machine. The construction of an equivalent
GOTO-program with k registers is shown for the case k = 2. The generalization
to arbitrary k is straightforward. Let S = {s1, s2, . . . , sn}, for some n ≥ 1,
be the state set of A, whose initial state is s1. The following GOTO-program P
simulates A, where registers c1 and c2 are used to store the values of the counters.
Initially, P starts with the input value stored in register c1, and c2 is set to 0.

M1: P1; {P1 simulates state s1}
...

Mn: Pn; {Pn simulates state sn}
M0: {no operation to terminate P}

The sub-programs Pi are as follows, where we use the notions as in the proof
of Theorem 5.

IF c1 = 0 GOTO Ni,0;
IF c2 = 0 GOTO Ni,1,0;
op1(c1); op2(c2); {c1 > 0, c2 > 0}
GOTO Mo; {δ(si, 1, 1) = (so, op1, op2)}

Register Complexity of LOOP-, WHILE-, and GOTO-Programs 243

Ni,0: IF c2 = 0 GOTO Ni,0,0;
op1(c1); op2(c2); {c1 = 0, c2 > 0}
GOTO Mq; {δ(si, 0, 1) = (sq, op1, op2)}

Ni,1,0: op1(c1); op2(c2); {c1 > 0, c2 = 0}
GOTO Mp; {δ(si, 1, 0) = (sp, op1, op2)}

Ni,0,0: op1(c1); op2(c2); {c1 = 0, c2 = 0}
GOTO Mr {δ(si, 0, 0) = (sr, op1, op2)}

��

Corollary 10. GOTO = GOTO3, there is a universal GOTO-program with three reg-
isters.

The witness function f(n) = 2n separates the first two levels:

Theorem 11. GOTO1 ⊂ GOTO2

5 Conclusions

We have done a few steps towards the exploration of register complexity of LOOP-,
WHILE-, and GOTO-programs. There are still many open questions and interesting
problems. Finally, we briefly discuss some of them.

• Are the inclusions LOOP2 ⊆ LOOP3 ⊆ LOOP4, WHILE2 ⊆ WHILE3, or GOTO2 ⊆
GOTO3 strict?

Since the nesting depth of LOOP-programs with a fixed number of registers can be
arbitrarily large, it seems to be difficult to argue with upper or lower bounds on
the running time or on the sum of register values in order to separate the levels.
On one hand, the technique used to separate the first level, i.e., to characterize
the computable functions and to identify gaps in the orders of magnitude, might
be refined for higher levels. On the other hand, the gaps could be too small for
this technique.

• Which sets of register operations are universal, i.e., allow to construct uni-
versal programs? For historical reasons, we have incrementation, decremen-
tation, and initialization with zero, but, in general, one can ask for any
reasonable set of operations.

From our set, x := 0 can safely be replaced. On the other hand, we cannot omit
the incrementation (from our set), since otherwise, e.g., non-input registers would
always keep the value zero. What about decrementation? For LOOP-programs,
x := x − 1 can be replaced by y := 0; z := 0; LOOP x DO LOOP z DO y :=
y + 1 OD; z := 0; z := z + 1 OD followed by x := 0; LOOP y DO x := x + 1 OD.
Since the construction takes extra registers, the register complexity seems to be
sensitive to the set of operations, what raises the next questions.

• What are the relations between the number of necessary registers and the
set of operations?

244 M. Holzer and M. Kutrib

Similarly, one may ask for the role played by the allowed conditions. Here we
have tests = 0 and �= 0. If we allow more general tests, e.g., x = y or x �= y,
we can omit the decrementation x := x − 1 from WHILE- and GOTO-programs.
But again, this takes extra registers. Conversely, one can omit the test = 0 at
the cost of extra registers. So, the set of operations and the set of tests and the
number of registers are sensitively connected.

• What are the relations between the number of necessary registers and the
set of tests?

Acknowledgements

The authors are grateful to Rudolf Freund who pointed out an error in an earlier
version of the paper.

References

1. A. Church. An unsolvable problem of elementary number theory. American Journal
of Mathematics, 58:345–363, 1936.

2. E. Engler and P. Läuchli. Berechnungstheorie für Informatiker. Teubner, 1988.
3. R. Freund, C. Mart́ın-Vide, G. Păun. From regulated rewriting to computing with

membranes: collapsing hierarchies. Theoretical Computer Science, 312:143–188,
2004.

4. A. Grzegorczyk. Some classes of recursive functions. Rozprawy Matematycne,
4:1–45, 1953.

5. A. J. Kfoury, R. N. Moll, and M. A. Arbib. A Programming Approach to Com-
putability. Texts and Monographs in Computer Science. Springer, 1982.

6. S. C. Kleene. General recursive functions of natural numbers. Mathematische
Annalen, 112:727–742, 1936.

7. A. R. Meyer and D. M. Ritchie. The complexity of loop programs. In Proceedings
of the ACM National Meeting, pages 465–469. American Mathematical Society,
1967.

8. M. L. Minsky. Computation: Finite and Infinite Machines. Automatic Computa-
tion. Prentice-Hall, 1967.

9. E. L. Post. Finite combinatory processes—formulation 1. The Journal of Symbolic
Logic, 1:103–105, 1936.

10. J. C. Shepherdson and H. E. Sturgis. Computability of recursive functions. Journal
of the ACM, 10:217–255, 1963.

11. A. M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42:230–265, 1936.

12. A. M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. A correction. Proceedings of the London Mathematical Society,
43:544–546, 1937.

Classification and Universality of Reversible

Logic Elements with One-Bit Memory

Kenichi Morita, Tsuyoshi Ogiro, Keiji Tanaka, and Hiroko Kato

Hiroshima University, Graduate School of Engineering,
Higashi-Hiroshima, 739-8527, Japan
morita@iec.hiroshima-u.ac.jp

Abstract. A reversible logic element is a model of a computing element
that has an analogous property to physical reversibility. In this paper,
we investigate k-symbol reversible elements with one-bit memory (i.e.,
two states) for k = 2, 3, and 4. We classified all of them, and showed the
total numbers of essentially different elements are 8 (k = 2), 24 (k = 3),
and 82 (k = 4). So far, a rotary element, a 2-state 4-symbol reversible
element, has been known to be logically universal. Here, we proved that
a new and interesting elements called 3- and 4-symbol left-/right-rotate
elements are both universal. We also gave a new concise construction
method of a Fredkin gate out of rotary elements.

Keywords: reversible logic element, logical universality, rotary element, Fredkin gate

1 Introduction

Reversible computing (see e.g. [1,2]) is a paradigm of computing that has a
property analogous to physical reversibility, and is related to quantum computing
(see e.g. [4]). So far, reversible Turing machines, reversible cellular automata,
etc. have been proposed and investigated as models of reversible computing.

Reversible logic elements and circuits were first studied by Toffoli [8,9] and
Fredkin and Toffoli [3]. There are “universal” reversible elements in the sense that
any logic function (even if it is irreversible) can be realized in a circuit composed
only of them. A Fredkin gate [3] and a Toffoli gate [8] are typical universal
reversible gates having 3 inputs and 3 outputs. Hence a universal computer can
be constructed as a circuit composed only of such gates and delay elements.

Besides reversible gates (i.e., elements without memory), there are also uni-
versal reversible elements with memory. A rotary element [6,7] is a one having
one-bit memory (i.e., two states) and 4 input/output symbols (or it can be re-
garded as having 4 input/output lines). It was shown that a reversible element
with memory like RE is very useful when constructing reversible computers such
as reversible Turing machines and counter machines concisely [6,7].

In this paper, we investigate 2-state k-symbol reversible logic elements for
k = 2, 3, and 4 to find logically universal elements. We classify all of them,
and show the total numbers of equivalence classes of elements are 8 (k = 2),

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 245–256, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

246 K. Morita et al.

24 (k = 3), and 82 (k = 4). Here, we introduce a new and interesting elements
called 3- and 4-symbol left-/right-rotate elements (3LRRE and 4LRRE), and
proved their logical universality. We also give a new construction method of a
Fredkin gate out of rotary elements, which improves the method given in [7].

2 Reversible Logic Elements

2.1 Logic Elements Formalized as Reversible Sequential Machines

Since a reversible logic element with memory can be formalized as a reversible
sequential machine (RSM), we first give a definition of the latter.

A sequential machine (SM) (of Mealy type) is a system defined by

M = (Q,Σ, Γ, q0, δ),

where Q is a finite non-empty set of states, Σ and Γ are finite non-empty sets
of input and output symbols, respectively, and q0 ∈ Q is an initial state. δ :
Q × Σ → Q × Γ is a mapping called a move function. A variation of an SM
M = (Q,Σ, Γ, δ), where no initial state is specified, is also called an SM.

M is called a reversible sequential machine (RSM) if δ is one-to-one (hence
|Σ| ≤ |Γ |). An RSM is “reversible” in the sense that, from the present state and
the output of M , the previous state and the input are determined uniquely.

In the rest of this paper, we mainly investigate RSMs with |Q| = 2 and
|Σ| = |Γ | = k. Here, such an RSM is also called a 2-state k-symbol reversible
logic element, because we investigate how universal computers can be built by
using only such elements.

2.2 Rotary Element (RE): An Example of a Reversible Logic
Element

A rotary element (RE) [6,7] is a 2-state 4-symbol reversible element defined by

RE = ({ , }, {n, e, s, w}, {n′, e′, s′, w′}, δRE),

where the move function δRE is shown in Table 1 (for instance, if the present
state is and the input is n, then the state becomes and the output is w′).
It is easily verified that an RE is reversible.

Input
Present state n e s w

H-state: w′ w′ e′ e′

V-state: s′ n′ n′ s′

Table 1. The move function δRE of a rotary element RE.

The operation of an RE can be understood by the following intuitive inter-
pretation. It has two states called H-state () and V-state (), and four

Classification and Universality of Reversible Logic Elements 247

input lines {n, e, s, w} and four output lines {n′, e′, s′, w′} corresponding to the
input and output alphabets. All the values of input and output lines are either 0
or 1, i.e., (n, e, s, w), (n′, e′, s′, w′) ∈ {0, 1}4. However, we restrict the domain of
their values as {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}, i.e., exactly one “1”
appears among the four input (output, respectively) lines at a time, when an
input is given (an output is produced). We also assume if all the values of input
lines are 0’s then neither state-transition nor output-production occurs. The op-
eration of an RE is left undefined for the cases that signal 1’s are given to two or
more input lines. Signals 1 and 0 are interpreted as existence and non-existence
of a particle. We can regard an RE has a “rotating bar” to control the moving
direction of a particle. When no particle exists, nothing happens on the RE. If
a particle comes from a direction parallel to the rotating bar, then it goes out
from the output line of the opposite side (i.e., it goes straight ahead) without
affecting the direction of the bar (Fig. 1 (a)). On the other hand, if a particle
comes from a direction orthogonal to the bar, then it makes a right turn, and
rotates the bar by 90 degrees counterclockwise (Fig. 1 (b)).

t = 0

� �
��

�

��

�

t = 1

� �
��

�

��

�

t = 0

� �
��

�

��

�

t = 1

� �
��

�

��

�
(a) (b)

Fig. 1. Operations of an RE: (a) the parallel case (i.e., the coming direction of
a particle is parallel to the rotating bar), and (b) the orthogonal case.

Based on such an interpretation, we define a reversible logic circuit. It is a
circuit composed only of reversible logic elements satisfying the following con-
dition. Each output of an element can be connected at most one input of some
other (or may be the same) element, i.e., “fan-out” of an output is not allowed.
This condition corresponds to the conservation law in physics [3].

In the following sections, we use a pictorial representation of a move function
of a 2-state reversible element instead of using a table. Fig. 2 shows such a
representation of the move function of an RE.

n
e
s
w�

�
�
�

�
�
�
�

H-state

n′

e′

s′

w′

n
e
s
w�

�
�
�

�
�
�
�

V-state

n′

e′

s′

w′

Fig. 2. Pictorial representation of the move function of an RE. Solid and dotted
lines in a box describe the input-output relation for each state. Further, a solid
line shows the state transits to another, and a dotted line shows the state remains
unchanged.

248 K. Morita et al.

2.3 Logical Universality of Reversible Logic Elements

In this paper, we define the notion of logical universality as follows. A set of logic
elements is called logically universal if any sequential machine can be built as
a circuit composed only of the elements in the set (supposing some appropriate
“coding/decoding” method between state/symbols of the SM and those of the
logic elements). It is very well known that the traditional set of logic elements
{AND, NOT, delay element} is logcally universal.

A Fredkin gate and a Toffoli gate are 3-input 3-output reversible logic gates
that are known to be logically universal. (From the viewpoint of our formalism,
they can be regarded as 1-state 8-symbol reversible logic elements if unit-delays
are attached to them.) A Fredkin gate [3] is an element realizing the mapping
(c, p, q) $→ (c, cp + c̄q, cq + c̄p). Since AND and NOT can be constructed from
Fredkin gate [3], the set {Fredkin gate, delay element} is logically universal. A
Toffoli gate [8] realizes (x, y, z) $→ (x, y, (xy) ⊕ z). Also in this case AND and
NOT can be constructed from Toffoli gate. Hence, {Toffoli gate, delay element}
is logically universal.

Among 2-state reversible logic elements, an RE is the first one that was
shown to be logically universal. In [7] a construction method of a Fredkin gate
from 16 REs and delay elements was shown. It is also shown that any reversible
Turing machine can be composed only of REs very concisely [7]. Here we give
an improved result in Fig. 3 where a Fredkin gate is realized by using 8 REs and
delay elements. Since an RE can also operate as a simple delay element as in
Fig.1(a), we can conclude the set {RE} is logically universal.

�

�

3

�

�

3

�

�

3

�

�

3

�

�

�

�

�

�

�

�

10

�

1

�

1

�

�

� �

5

�

5 �

� � � � �

p

q

c

x

y

c′

Fig. 3. A new realization method of a Fredkin gate out of 8 REs and delay
elements, where c′ = c, x = cp + c̄q, y = cq + c̄p. Small triangles are delay
elements, where the number written inside of each triangle indicates its delay
time. The total delay time between inputs and outputs is 20.

Classification and Universality of Reversible Logic Elements 249

3 Clasification of 2-State Reversible Elements

In this section, we investigate 2-state k-symbol reversible logic elements for k =
2, 3, and 4, and show how many elements exist and how they are classified.

3.1 Equivalence Classes of 2-State Reversible Elements

Consider a 2-state 4-symbol reversible element M = (Q,Σ, Γ, δ). We fix the state
set as Q = {q0, q1}, and the input and output alphabets as Σ = {a, b, c, d} and
Γ = {w, x, y, z}, respectively. Then the move function δ is as follows.

δ : {q0, q1} × {a, b, c, d} → {q0, q1} × {w, x, y, z}
Since δ must be one-to-one, it is specified by a permutation from the set

{(q0, w), (q0, x), (q0, y), (q0, z), (q1, w), (q1, x), (q1, y), (q1, z)}.
Hence, there are 8! = 40320 elements in total. They are numbered by 0, · · · , 40319
in the lexicographic order of permutations. 2-state 2- and 3-symbol reversible
elements are also numbered in a similar manner. To indicate k-symbol element,
the prefix “k-” is attached to the serial number. Table 2 shows two examples of
elements No. 4-289 and No. 4-37963 specified by the following permutations (in
Table. 2(b), each symbol have a prime (′) for the sake of the later argument).

No. 4-289: ((q0, w), (q0, x), (q1, w), (q1, x), (q0, y), (q0, z), (q1, z), (q1, y))
No. 4-37963: ((q1, z), (q0, z), (q1, x), (q0, x), (q1, y), (q0, w), (q1, w), (q0, y))

We can regard two elements are “equivalent” if one can be obtained by re-
naming the states and the input/output symbols of the other. This notion is
formalized as follows.

Let M1 = (Q1, Σ1, Γ1, δ1) and M2 = (Q2, Σ2, Γ2, δ2) be two SMs. M1 and
M2 are called equivalent (denoted by M1 ∼ M2), if there exist one-to-one onto
mappings (bijections) f : Q1 → Q2, g : Σ1 → Σ2, and h : Γ1 → Γ2 that satisfy

∀q ∈ Q1, ∀s ∈ Σ1 [δ1(q, s) = ψ(δ2(f(q), g(s)))],

where ψ : Q2 × Γ2 → Q1 × Γ1 is defined as follows.

∀q ∈ Q2, ∀t ∈ Γ2 [ψ(q, t) = (f−1(q), h−1(t))]

Two elements No. 4-289 and No. 4-37963 are equivalent under the following
bijections (they are in fact equivalent to an RE).

f(q0) = q′0, f(q1) = q′1
g(a) = b′, g(b) = d′, g(c) = a′, g(d) = c′

h(w) = z′, h(x) = x′, h(y) = w′, h(z) = y′

The total numbers of 2-state 2-, 3-, and 4-symbol reversible elements are
4! = 24, 6! = 720, and 8! = 40320, respectively. We made a computer program
that computes all equivalence classes of them. The result is given in Figs. 4–6.
These figures show all representative elements in the equivalence classes of 2-,
3-, and 4-symbol reversible elements. The representatives are so chosen that it
has the smallest index number in the equivalence class.

250 K. Morita et al.

Present Input
state a b c d

q0 q0w q0x q1w q1x
q1 q0y q0z q1z q1y

(a) Element No. 4-289

Present Input
state a′ b′ c′ d′

q′0 q′1z′ q′0z′ q′1x′ q′0x′

q′1 q′1y
′ q′0w

′ q′1w
′ q′0y

′

(b) Element No. 4-37963

Table 2. An example of a pair of equivalent 2-state 4-symbol reversible elements.

�
�

�
�

�
�

�
�

2-0 (wires)

�
�

�
�

�
�

�
�

2-1 (wires)

�
�

�
�

�
�

�
�

2-2

�
�

�
�

�
�

�
�

2-3

�
�

�
�

�
�

�
�

2-4

�
�

�
�

�
�

�
�

2-5 (wires)

�
�

�
�

�
�

�
�

2-16 (wires)

�
�

�
�

�
�

�
�

2-17

Fig. 4. Representatives of 8 equivalence classes of 24 2-state 2-symbol reversible
elements.

�
�
�

�
�
�

�
�
�

�
�
�

3-0 (wires)

�
�
�

�
�
�

�
�
�

�
�
�

3-1 (wires)

�
�
�

�
�
�

�
�
�

�
�
�

3-3 (wires)

�
�
�

�
�
�

�
�
�

�
�
�

3-6 (2-2)

�
�
�

�
�
�

�
�
�

�
�
�

3-7

�
�
�

�
�
�

�
�
�

�
�
�

3-9

�
�
�

�
�
�

�
�
�

�
�
�

3-10

�
�
�

�
�
�

�
�
�

�
�
�

3-11 (2-3)

�
�
�

�
�
�

�
�
�

�
�
�

3-18

�
�
�

�
�
�

�
�
�

�
�
�

3-19 (2-4)

�
�
�

�
�
�

�
�
�

�
�
�

3-21 (wires)

�
�
�

�
�
�

�
�
�

�
�
�

3-23

�
�
�

�
�
�

�
�
�

�
�
�

3-60

�
�
�

�
�
�

�
�
�

�
�
�

3-61

�
�
�

�
�
�

�
�
�

�
�
�

3-63

�
�
�

�
�
�

�
�
�

�
�
�

3-64

�
�
�

�
�
�

�
�
�

�
�
�

3-65

�
�
�

�
�
�

�
�
�

�
�
�

3-90

�
�
�

�
�
�

�
�
�

�
�
�

3-91

�
�
�

�
�
�

�
�
�

�
�
�

3-94 (wires)

�
�
�

�
�
�

�
�
�

�
�
�

3-95 (2-17)

�
�
�

�
�
�

�
�
�

�
�
�

3-450 (wires)

�
�
�

�
�
�

�
�
�

�
�
�

3-451

�
�
�

�
�
�

�
�
�

�
�
�

3-453 [3LRRE]

Fig. 5. Representatives of 24 equivalence classes of 720 2-state 3-symbol re-
versible elements.

Classification and Universality of Reversible Logic Elements 251

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-0 (wires)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-1 (wires)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-3 (wires)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-7 (wires)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-9 (wires)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-24 (2-2)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-25 (3-7)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-26

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-27

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-31

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-33

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-34

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-35 (3-9)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-42

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-43 (3-10)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-45 (2-3)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-47

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-96

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-97 (3-18)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-99 (2-4)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-101

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-105 (wires)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-107 (3-27)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-113

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-288

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-289 [RE]

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-290

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-291

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-293

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-304

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-305

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-312

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-313

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-314 (3-60)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-315 (3-61)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-316

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-317

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-319

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-321 (3-63)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-322

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-323

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-328

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-329

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-330

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-331

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-333

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-334 (3-64)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-335 (3-65)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-576

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-577

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-578

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-579

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-580 (3-90)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-581 (3-91)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-592 (wires)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-593 (2-17)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-598

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-599

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-2592

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-2593

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-2594

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-2595

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-2596

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-2597

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-2608

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-2609

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-2610

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-2611

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-2614

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-2615

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-3456

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-3457

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-3460

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-3461

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-3474 (wires)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-3475 (3-451)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-3477 (3-453)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-23616 (wires)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-23617

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-23619

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-23623 [4LRRE]

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4-23625

Fig. 6. Representatives of 82 equivalence classes of 40320 2-state 4-symbol re-
versible elements.

252 K. Morita et al.

3.2 Classifying Representative Elements into Three Categories

As shown in Figs. 4–6 total numbers of equivalence classes of k-symbol reversible
elements for k = 2, 3, and 4 are 8, 24, and 82, respectively. We further classify
them into the following three categories.

1. Elements equivalent to connecting wires:
This is a degenerate case. For example, the element No. 3-0 in Fig. 5 acts
as three wires that simply connect input and output lines. (Note that such
a wire has a unit-time delay. Therefore, it can be regarded as a 1-state 1-
symbol RSM.) No. 3-1 is also the case, because no input makes state-change.
Apparently, such elements have no logical function.

2. Elements equivalent to a simpler element with fewer symbols:
This is also a degenerate case, and reducible to the elements with fewer
input/output symbols. For example, the element No. 3-6 is equivalent to the
element No. 2-2 plus a simple wire.

3. Proper k-symbol elements:
All the elements other than the cases 1 and 2 are “proper” k-symbol elements.
This is a non-degenerate case. The elements in this category are the main
concern of the investigation for each k.

Classification can be done by checking the move function (or its pictorial rep-
resentation) of each representative element. In Figs. 4–6, the cases 1 and 2 are
indicated at the upper-right corner of each box. Table 3 shows the number of
elements in each category for k =2, 3, and 4.

Total
number of

representative
elements

1. Elements
equivalent to
connecting

wires

2. Elements
equivalent
to simpler
elements

3. Nondegenerate
k-symbol
elements

k = 2 8 4 0 4
k = 3 24 6 4 14
k = 4 82 9 18 55

Table 3. Classification of representatives of 2-state k-symbol reversible elements.

4 Left-/Right-Rotate Elements and Their Universality

In this section, we investigate the specific reversible elements No. 3-598 and
No. 4-29514 called left-/right-rotate elements with 3- and 4-input/output lines
(3LRRE and 4LRRE), which are equivalent to the representatives No. 3-453
and No.4-23623, respectively. The operations of them are very simple, mainly
because they are isotropic (explained later). In spite of their simplicity, we can
show logical universality of them.

Classification and Universality of Reversible Logic Elements 253

4.1 Left-/Right-Rotate Element with 4-Input/Output Lines
(4LRRE)

The element No. 4-29514 shown in Fig. 7 is called a left-/right-rotate element
with 4-input/output lines (4LRRE). If we depict a 4LRRE by a square-shaped
one shown in Fig. 8, its operation is easily understood. That is, L-state (R-state,
respectively) makes every coming signal turn left (right), and then makes the
state transit to R-state (L-state).

a

b
c

d�
�
�
�

�
�
�
�

L-state

w

x
y

z

a

b
c

d�
�
�
�

�
�
�
�

R-state

w

x
y

z

Fig. 7. Element No. 4-29514 called a 4LRRE (equivalent to the representative
element No. 4-23623).

� �
��

�

��

�

a

b

c

d

w

x

y

z

� �
��

�

��

�

a

b

c

d

w

x

y

z

L-state R-state

Fig. 8. Depicting a 4LRRE as a square-shaped element.

A 4LRRE is “isotropic” in the following sense. A 4-symbol reversible element
M = (Q,Σ, Γ, δ) is called isotropic (or rotation symmetric) if the following
condition holds.

∀ q, q′ ∈ Q, s ∈ Σ, t ∈ Γ [if δ(q, s) = (q′, t) then δ(q, π(s)) = (q′, π(t))],

where π : Σ ∪ Γ → Σ ∪ Γ is the following permutation.

π(a) = b, π(b) = c, π(c) = d, π(d) = a,
π(w) = x, π(x) = y, π(y) = z, π(z) = w.

This notion can be generalized to k-symbol reversible elements by defining the
permutation π similarly as above.

We now show that the universality of a 4LRRE. An RE is simulated by a
circuit composed of 4LRREs and delay elements as in Fig. 9. H-state and V-state
of an RE correspond to Fig. 9 (a) and (b), respectively. If a signal comes from
the input line n of Fig. 9 (a), then the signal passes through all the four 4LRREs,
and goes out from w′. Hence the state of the circuit becomes as in Fig. 9 (b).

254 K. Morita et al.

On the other hand, if a signal comes from the input line n of Fig. 9 (b), then
the signal passes through only the leftmost 4LRRE twice, and goes out from s′.
Hence the state of the circuit remains unchanged. The other cases are similar to
the above.

A delay of two units of time can be realized as shown in Fig. 10 by using a
4LRRE. (If we do so, two units of time should be regarded as a new unit of time
hereafter.) Note that the state of the 4LRRE will be restored to the R-state after
the operation, hence the delay circuit can be used as a delay element repeatedly.
By above, we can conclude that the set {4LRRE} is logically universal.

�

�

�

�

�

�

�

�

2
�

2
�

2
�

2
�

� � ��

� �� �

n e s w

s′ w′ n′ e′

(a) An RE of H-state.

�

�

�

�

�

�

�

�

2
�

2
�

2
�

2
�

� � ��

� �� �

n e s w

s′ w′ n′ e′

(b) An RE of V-state.

Fig. 9. Realization of an RE by 4LRREs. The total time of delay between input
and output is 4.

�

�

�

Fig. 10. Realization of a delay of two units of time by a 4LRRE.

Classification and Universality of Reversible Logic Elements 255

4.2 Left-/Right-Rotate Element with 3-Input/Output Lines
(3LRRE)

The element No. 3-598 shown in Fig. 11 is called a left-/right-rotate element
with 3-input/output lines (3LRRE). (It is also possible to depict 3LRRE as a
triangular-shaped element that makes a coming signal turn left or right depend-
ing on its state.)

a

b
c �
�
�

�
�
�

L-state

x
y

z

a

b
c �
�
�

�
�
�

R-state

x
y

z

Fig. 11. Element No. 3-598 called a 3LRRE (equivalent to the representative
element No. 3-453).

Although a 3LRRE is a very simple element, we can construct a circuit
that simulates a Fredkin gate by using 3LRREs and delay elements as shown in
Fig. 12. The initial states of the 3LRREs are all L-states, and after an operation
all the states are restored to the L-states. It is also easy to make a delay of two
units of time by a 3LRRE as in 4LRRE. Hence, we can conclude that the set
{3LRRE} is logically universal.

c
p

c'
x

yq

Fig. 12. A realization method of a Fredkin gate out of 3LRREs and delay
elements, where c′ = c, x = cp + c̄q, y = cq + c̄p. Initially, all the 3LRREs are
set to L-states. The total delay time between inputs and outputs is 80.

256 K. Morita et al.

5 Concluding Remarks

In this paper, we investigated and classified 2-state k-symbol reversible logic
elements for k = 2, 3, and 4. We introduced specific simple 3- and 4-symbol
elements called 3LRRE and 4LRRE, and showed they are both logically uni-
versal. In the cases of k = 3 and 4, it is likely that there are many simple and
interesting reversible elements with logical universality other than RE, 3LRRE,
and 4LRRE. In the case of 2-state 2-symbol RLEMs, Lee et al. [5] showed that
the set {No.2-3, No.2-4} is logically universal, i.e., a Fredkin gate can be con-
structed by using both two RLEMs No.2-3 and No.2-4. On the other hand, we
conjecture each of all the 2-state 2-symbol reversible elementsare non-universal.
These problems are left for the future study.

Acknowledgement. The authors would express their thanks to Dr. Chuzo
Iwamoto and Dr. Katsunobu Imai of Hiroshima University for their helpful dis-
cussions and useful comments. One of the author K. Morita is also grateful to
Dr. Ferdinand Peper and the members of his project in Kansai Advanced Re-
search Center of NICT. This work was supported in part by Grant-in-Aid for
Scientific Research (C) No. 16500012 from JSPS.

References

1. Bennett, C.H., Logical reversibility of computation, IBM J. Res. Dev., 17, 525–532
(1973).

2. Bennett, C.H., Notes on the history of reversible computation, IBM J. Res. Dev.,
32, 16–23 (1988).

3. Fredkin, E. and Toffoli, T., Conservative logic, Int. J. Theoret. Phys., 21, 219–253
(1982).

4. Gruska, J., Quantum Computing, McGraw-Hill, London (1999).
5. Lee, J., Peper, F., Adachi, S. and Mashiko, S., Asynchronously timed reversible

logic elements, (submitted for publication).
6. Morita, K., Tojima, Y. and Imai, K., A simple computer embedded in a reversible

and number-conserving two-dimensional cellular space, Multiple-Valued Logic, 6,
483–514 (2001).

7. Morita, K., A simple universal logic element and cellular automata for reversible
computing, Proc. 3rd Int. Conference on Machines, Computations, and Universality,
Chisinau, LNCS 2055, Springer-Verlag, 102–113 (2001).

8. Toffoli, T., Reversible computing, in Automata, Languages and Programming,
Springer-Verlag, LNCS-85, 632–644 (1980).

9. Toffoli, T., Bicontinuous extensions of invertible combinatorial functions, Mathe-
matical Systems Theory, 14, 12–23 (1981).

Universal Families of Reversible P Systems

Alberto Leporati, Claudio Zandron, and Giancarlo Mauri

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano – Bicocca

Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
{leporati, zandron, mauri}@disco.unimib.it

Abstract. Conservative logic is a mathematical model of computation
that reflects some properties of microdynamical laws of physics, such as
reversibility and the conservation of the internal energy of the physi-
cal system used to perform the computations. The model is based upon
the Fredkin gate, a reversible and conservative three–input/three–output
boolean gate which is functionally complete for boolean logic. Computa-
tions are performed by reversible circuits composed by Fredkin gates.
In this paper we introduce energy–based P systems as a parallel and
distributed model of computation in which the amount of energy ma-
nipulated and/or consumed during computations is taken into account.
Moreover, we show how energy–based P systems can be used to simu-
late reversible Fredkin circuits. The simulating systems turn out to be
themselves reversible and conservative.

1 Introduction

Reversibility plays a fundamental role when the possibility to perform computa-
tions with minimal energy dissipation is considered. Studies on thermodynamics
of computing started in the 1950’s, and continued in the following decades. As a
result some bounds on the amount of dissipated energy during transmission and
computation were established [11,3,2,12]. As shown in [11], erasing a bit neces-
sarily dissipates kT ln 2 Joule in a computer operating at temperature T , and
generates a corresponding amount of entropy. Here k is Boltzmann’s constant
and T the absolute temperature in degrees Kelvin, so that kT ≈ 3×10−21 Joule
at room temperature. However, in [11] Landauer also demonstrated that only
logically irreversible operations necessarily dissipate energy when performed by
a physical computer. (An operation is logically reversible if its inputs can al-
ways be deduced from its outputs.) This result gave substance to the idea that
logically reversible computations could be performed with zero internal energy
dissipation. Indeed, since the appearance of [11] many authors have concentrated
their attention on reversible computations. The importance of reversibility has
grown further with the development of quantum computing, where the dynamical
behavior of quantum systems is usually described by means of unitary operators,
which are inherently logically reversible.

Many papers on reversible computation have appeared in literature, the most
famous of which is certainly the work of Bennett on (universal) reversible Turing

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 257–268, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

258 A. Leporati, C. Zandron, and G. Mauri

machines [3]. Here we consider the work of Fredkin and Toffoli on conservative
logic [7], which is a mathematical model that allows one to describe computa-
tions which reflect some properties of microdynamical laws of physics, such as
reversibility and conservation of the internal energy of the physical system used
to perform the computations. In this model, computations are performed by
reversible circuits composed by Fredkin gates.

In this paper we introduce energy–based P systems as a parallel and dis-
tributed model of computation in which the amount of energy manipulated
and/or consumed during computations is taken into account. A given amount of
energy is associated to each object of the system. Moreover, instances of a special
symbol e are used to denote free energy units occurring into the regions of the
system. These energy units can be used to transform objects, using appropriate
rules. The rules are defined according to conservativeness considerations. An ob-
ject can always be transformed into another object having the same energy. On
the other hand, if the transformed object has a different energy then the required
(resp., exceeding) free energy units are taken from (resp., released to) the region
where the rule is applied. We assume that the application of rules consumes no
energy. This means, in particular, that objects can be moved (without altering
them) between the regions of the system without energy consumption. A special
case of energy–based P systems are conservative P systems, where the amount
of energy entering the system with the input values is completely returned with
the output values at the end of the computation.

We first show that a Fredkin gate can be simulated using an energy–based
P system. The proposed P system that performs the simulation turns out to
be itself reversible and conservative. Subsequently, we show how any reversible
circuit composed by Fredkin gates (also called Fredkin circuits, for short) can
be simulated by a corresponding reversible and conservative energy–based P
system. Indeed, the simulating P system can be made self–reversible, meaning
that the same system can also perform backward computations. Since families
of reversible Fredkin circuits can compute any function f : {0, 1}∗ → {0, 1},
energy–based P systems constitute the first known example (to the best knowl-
edge of the authors) of reversible and universal P systems.

This is by no means the first time that energy is considered when dealing with
P systems. We recall in particular [1,8,16,9]. This is not even the first paper which
deals with the simulation of boolean gates and circuits by biologically inspired
models of computation: for instance, in [13] a model for simulating boolean
circuits (composed by and, or, not gates) with DNA algorithms is proposed,
in [6] the same goal is reached using finite splicing, and in [5] some P systems
that simulate boolean circuits are presented. Finally we also mention [10], where
a biomolecular implementation of logically reversible computation using short
strands of DNA as input and output lines of a Fredkin gate is demonstrated, and
a method to connect Fredkin gates in order to create more complicated genetic
networks is described.

Universal Families of Reversible P Systems 259

2 Conservative Logic and Fredkin Circuits

Conservative logic is a mathematical model of computation based upon the so
called Fredkin gate, a three–input/three–output boolean gate originally intro-
duced by Petri in [17] whose input/output map fg : {0, 1}3 → {0, 1}3 associates
any input triple (x1, x2, x3) with its corresponding output triple (y1, y2, y3) as
follows:

y1 = x1

y2 = (¬x1 ∧ x2) ∨ (x1 ∧ x3)
y3 = (x1 ∧ x2) ∨ (¬x1 ∧ x3)

(1)

A useful point of view is that the Fredkin gate behaves as a conditional switch:
that is, FG(1, x2, x3) = (1, x3, x2) and FG(0, x2, x3) = (0, x2, x3) for every
x2, x3 ∈ {0, 1}. Hence, x1 can be considered as a control input whose value
determines whether the input values x2 and x3 have to be exchanged or not.

The Fredkin gate is functionally complete for boolean logic: by fixing x3 = 0
we get y3 = x1 ∧ x2, whereas by fixing x2 = 1 and x3 = 0 we get y2 = ¬x1.

The Fredkin gate is also reversible, that is, it computes a bijective map on
{0, 1}3. Moreover, for every input/output pair the number of 1’s in the input
triple is the same as the number of 1’s in the output triple. In other words, the
output triple is obtained by applying an appropriate (input–dependent) permu-
tation to the input triple. In [7] Fredkin and Toffoli interpret the conservation
of the number of 1’s between input and output triples as the conservation of
the amount of energy associated to the input triple, thus assuming that two
different triples having the same number of 0’s and 1’s require the same amount
of energy to be realized in a physical system. Let us note that conservativeness
is defined (both here and in [7]) as a mathematical notion; namely, it is not
required that the entire energy used to perform the computation is preserved, or
that the computing device is a conservative physical system (an ideal but unre-
alistic situation). In particular, we do not consider the energy needed to supply
the computing device.

Putting together Fredkin gates we can build Fredkin circuits, that is, acyclic
and connected directed graphs made up of layers of Fredkin gates. For a precise
and formal definition of circuits see, for example, [19]. Figure 1 depicts an ex-
ample of Fredkin circuit having three gates arranged in two layers. Evaluating

x

x

x

x

x

2

3

4

5

6

x1 y1

y2

y3

y4

y5

y6

FG

FG

FG

x

x

x

x

x

2

3

4

5

6

x1

FG

FG

FG

y1

y2

y3

y4

y5

y6

Fig. 1. A Fredkin circuit (on the left) and its normalized version

260 A. Leporati, C. Zandron, and G. Mauri

a Fredkin circuit in topological order (i.e. layer by layer, starting from the layer
directly connected to the input lines) we can define the boolean function com-
puted by the circuit as the composition of the functions computed by each layer
of Fredkin gates. In evaluating the resources used by a Fredkin circuit to compute
a boolean function we consider the size and the depth of the circuit, respectively
defined as the number of gates and the number of layers of the circuit.

A family of Fredkin circuits is a sequence {FCn}n∈IN where, for each n ∈ IN,
FCn is an n–input Fredkin circuit. Let fFCn denote the function computed
by FCn. Then we say that {FCn}n∈IN computes the function f : {0, 1}∗ →
{0, 1}∗ such that f(x) = fFC|x|(x) for all x ∈ {0, 1}∗. Since the Fredkin gate is
functionally complete, for any family {fn}n∈IN of boolean functions there exists
a family {FCn}n∈IN of Fredkin circuits that computes it. Let s, d : IN→ IN. We
say that family {FCn}n∈IN has size s and depth d if for every n ∈ IN the circuit
FCn has size s(n) and depth d(n).

A reversible n–input Fredkin circuit is a Fredkin circuit FCn which com-
putes a bijective map fFCn : {0, 1}n → {0, 1}n. In a reversible Fredkin circuit
the FanOut function, defined as FanOut(x) = (x, x) for all x ∈ {0, 1}, is ex-
plicitly computed with a gate. Fortunately, the Fredkin gate can also be used
for this purpose, since fg(x, 0, 1) = (x, x,¬x) for x ∈ {0, 1}. Compare this situ-
ation with usual (non reversible) circuits, where the FanOut function is simply
implemented by splitting wires. Let us note that the function computed by a
reversible Fredkin circuit is conservative.

In [7] Fredkin and Toffoli introduce a computational model for reversible and
conservative computations. Computations are performed by reversible Fredkin
circuits. The conservativeness requirement (preservation of the number of 1’s)
is again equivalent to the requirement that the output n-tuple is obtained by
applying an appropriate (input–dependent) permutation to the corresponding
input n-tuple.

It is important to note that reversibility and conservativeness are two inde-
pendent notions: a function (computed by a gate or circuit) may be reversible,
conservative, both or none of them. However, for any function f : {0, 1}n →
{0, 1}m it is possible to build a new function fR : {0, 1}n+m → {0, 1}n+m such
that fR is a bijection on {0, 1}n+m and fR(x, 0m) = (x, f(x)) for all x ∈ {0, 1}n,
where 0m is the m-tuple consisting of all 0’s. Analogously, it is possible to build
a conservative function fC that computes the values assumed by f in its first m
output bits. Finally it is also possible to extend the reversible function fR built
above to a reversible and conservative function fRC by adding some additional
input and output variables. For the proofs we refer the reader to [4].

3 Energy-Based P Systems

P systems (also called membrane systems) were introduced in [14] as a new class
of distributed and parallel computing devices, inspired by the structure and
functioning of living cells. The basic model consists of a hierarchical structure
composed by several membranes, embedded into a main membrane called the

Universal Families of Reversible P Systems 261

skin. Membranes divide the Euclidean space into regions, that contain some
objects (represented by symbols of an alphabet) and evolution rules. Using these
rules, the objects may evolve and/or move from a region to a neighboring one.
The rules are applied in a nondeterministic and maximally parallel way: all the
objects that may evolve are forced to evolve. A computation starts from an
initial configuration of the system and terminates when no evolution rule can be
applied. The result of a computation is the multiset of objects contained into an
output membrane or emitted from the skin of the system.

In what follows we assume the reader is already familiar with the basic notions
and the terminology underlying P systems. For a systematic introduction, we
refer the reader to [15]. The latest information about P systems can be found in
[18].

In order to take into account the amount of energy used during computations,
we define a new model which we call energy–based P system. In this model, we
consider a special symbol e which denotes a free energy unit floating into regions;
moreover, the rules are defined according to conservativeness considerations. We
will show how this model can be used to simulate any reversible Fredkin circuit.

Formally, an energy–based P system (of degree m ≥ 1) is a construct

Π = (A, ε, μ, e, w1, . . . , wm, R1, . . . , Rm, iin, iout)

where:

– A is an alphabet; its elements are called objects ;
– ε : A → IN is a mapping that associates to each object a ∈ A the value

ε(a) (also denoted by εa), which can be viewed as the “energy value of a”.
If ε(a) = �, we also say that object a embeds � units of energy;

– μ is a hierarchical membrane structure consisting of m membranes. For the
sake of clarity, we will label membranes with mnemonic identifiers which
recall their function;

– e �∈ A is a special symbol that denotes one free energy unit, that is, one unit
of energy which is not embedded into any object;

– wi, for all i ∈ {1, . . . ,m}, specify the multiset (over A ∪ {e}) of objects
initially present in region i;

– Ri, for all i ∈ {1, . . . ,m}, is a finite set of evolution rules over A associated
with region i. Only rules of the following types are allowed:

aek → (b, p) , a→ (b, p)ek , e→ (e, p) , a→ (b, p)

where a, b ∈ A, p ∈ {here, in(name), out} and k is a non negative integer;
– iin is an integer between 1 and m and specifies the input membrane of Π ;
– iout is an integer between 0 and m and specifies the output membrane of Π .

If iout = 0 then the environment is used for the output, that is, the output
value is the multiset of objects (over A) emitted from the skin.

A special attention is due to the definition of rules. The meaning of rule
aek → (b, p), with a, b ∈ A, p ∈ {here, in(name), out}, and k a positive integer

262 A. Leporati, C. Zandron, and G. Mauri

number, is the following: the object a, in presence of k free energy units, is
allowed to be transformed into object b. If p = here then the new object b
remains in the same region; if p = out then b exits from the current membrane.
Finally, if p = in(name) then b enters into the membrane labelled with name,
which must be a child of the current membrane in the membrane hierarchy.

The meaning of rule a → (b, p)ek, when k is a positive integer number, is
analogous. The object a is allowed to be transformed into object b by releasing
k units of free energy. As above, the new object b may optionally move one level
up or down into the membrane hierarchy. The k free energy units can now be
used by another rule to produce “more energetic” objects from “less energetic”
ones.

When k = 0 the rule aek → (b, p), also written as a→ (b, p), transforms the
object a into the object b and moves it (if p �= here) upward or downward into
the membrane hierarchy, without acquiring nor releasing any free energy unit.
Analogously, rules e → (e, p) simply move (if p �= here) one unit of free energy
upward or downward into the membrane hierarchy.

A further constraint is that each rule must be “conservative”, in the sense
that the amount of energy occurring on the left side of the rule must be the same
as the amount of energy which occurs on the right side.

With a little abuse of notation, when the pair (x, p), with x ∈ A ∪ {e}
and p ∈ {here, in(name), out}, appears into a rule we will write xp. Also, if
p = in(name) and no confusion arises we will usually write just the name of the
membrane. Moreover, instead of writing ek we will sometimes explicitly write k
instances of e. It is also understood that the position of ek (that is, on the left
or on the right of the symbol from A) either into the left or into the right side
of a rule is uninfluent. Finally, when the position p of an object which occurs in
the right side of a rule is “here” we will omit to write it.

A configuration of Π is the sequence (M1, . . . ,Mm) of multisets (over A∪{e})
of objects contained in each region of the system. (w1, . . . , wm) is called the initial
configuration. For two configurations (M1, . . . ,Mm), (M ′

1, . . . ,M
′
m) of Π we write

(M1, . . . ,Mm) ⇒ (M ′
1, . . . ,M

′
m) to denote a transition from (M1, . . . ,Mm) to

(M ′
1, . . . ,M

′
m). The reflexive and transitive closure of ⇒ is denoted by ⇒∗. A

final configuration is a configuration where no rule can be applied.
A computation is a sequence of transitions between configurations of Π ,

starting from the initial configuration. A computation is successful if and only
if it reaches a final configuration or, in other words, it halts. It is understood
that the multiset (over A, that is, not considering free energy units) of objects
which occur in wiin are the input values for the computation. Analogously, the
multiset (over A) of objects occurring in the output membrane (or emitted from
the skin if iout = 0) in the final configuration is the output of the computation.
A non–halting computation produces no output.

Since energy is an additive quantity, it is natural to define the energy of a
multiset as the sum of the amounts of energy associated to each instance of the
objects which occur into the multiset. Analogously, the energy of a configuration
is the sum of the amounts of energy associated to each multiset which occurs into

Universal Families of Reversible P Systems 263

the configuration. A conservative computation is a computation where each con-
figuration has the same amount of energy. A conservative energy–based P system
is an energy–based P system that performs only conservative computations.

4 Simulating the Fredkin Gate with Energy-Based P
Systems

As depicted in Figure 2, energy–based P systems can be used to simulate the
Fredkin gate. The system contains 12 kinds of objects. For the sake of clarity,

FG

[0,1]
ID

ID
[b,2] [b,2]

[0,1]

ID

EXC

[b,3] [b,3]

[b,3] [b,3]

[b’,1]ee [b,1] out

[b’,2] e[b,2] out

oute[b,3][b’,3]

[1,1] [1,1]
EXC

EXC
[b,2] [b,2]

EXC

ID

[b,2]e
out

[b’,3]

[b,3]e
out

[b’,2]

[b,2] [b,2]
out

out
[b,3] [b,3]

[1,1]
out

[1’,1] ee

[b,2]e
out

[b,3]e
out

[b,2] [b,2]
out

out
[b,3] [b,3]

out
[0,1] [0’,1] ee

[b’,2]

[b’,3]

Fig. 2. Simulation of the Fredkin gate with an energy–based P system

we denote these objects by [b, j] and [b′, j], with b, b′ ∈ {0, 1} and j ∈ {1, 2, 3}.
Intuitively, [b, j] and [b′, j] indicate the boolean value which occurs in the j-th
line of the Fredkin gate. It will be clear from the simulation that we need two
different symbols to represent each of these boolean values. Every object of the
kind [b, j], with b ∈ {0, 1} and j ∈ {1, 2, 3}, has energy equal to 3, whereas
the objects [b′, 1] have energy equal to 1 and the objects [b′, 2] and [b′, 3] (with
b′ ∈ {0, 1}) have energies equal to 4.

The simulation works as follows. The input values [x1, 1], [x2, 2], [x3, 3], with
x1, x2, x3 ∈ {0, 1}, are injected into the skin. If x1 = 0 then the object [0, 1] enters
into membrane id, where it is transformed to the object [0′, 1] by releasing 2 units
of energy. The object [0′, 1] leaves membrane id and waits for 2 energy units to
transform back to [0, 1] and leave the system. The objects [x2, 2] and [x3, 3],
with x2, x3 ∈ {0, 1}, may enter nondeterministically either into membrane id or
into membrane exc; however, if they enter into exc they cannot be transformed
to [x′2, 3] and [x′3, 2] since in exc there are no free energy units. Thus the only

264 A. Leporati, C. Zandron, and G. Mauri

possibility for objects [x2, 2] and [x3, 3] is to leave exc and choose again between
membranes id and exc in a nondeterministic way. Eventually, after some time
they enter (one at the time or simultaneously) into membrane id. Here they have
the possibility to be transformed into [x′2, 2] and [x′3, 3] respectively, using the
2 units of free energy which occur into the region enclosed by id (alternatively,
they have the possibility to leave id and choose nondeterministically between
membranes id and exc once again). When the objects [x′2, 2] and [x′3, 3] are
produced they immediately leave id, and are only allowed to transform back to
[x2, 2] and [x3, 3] respectively, releasing 2 units of energy. The objects [x2, 2] and
[x3, 3] just produced leave the system, and the 2 units of energy can only be used
to transform [0′, 1] back to [0, 1] and expel it from the skin.

On the other hand, if x1 = 1 then the object [1, 1] enters into membrane
exc where it is transformed into the object [1′, 1] by releasing 2 units of energy.
The object [1′, 1] leaves the membrane exc and waits for 2 energy units to
transform back to [1, 1] and leave the system. Once again the objects [x2, 2] and
[x3, 3], with x2, x3 ∈ {0, 1}, may choose nondeterministically to enter either into
membrane id or into membrane exc. If they enter into id they can only exit
again since in id there are no free energy units. When they enter into exc they
can be transformed to [x′2, 3] and [x′3, 2] respectively, using the 2 free energy units
which occur into the region, and leave exc. Now objects [x′2, 3] and [x′3, 2] can
only be transformed into [x2, 3] and [x3, 2] respectively, and leave the system.
During this transformation 2 free energy units are produced; these can only be
used to transform [1′, 1] back to [1, 1], which leaves the system.

It is apparent from the simulation that the system can be defined to work
on any triple of lines of a circuit, simply modifying the values of the second
component of the objects manipulated by the system.

The proposed P system is conservative: the number of energy units present
into the system (both free and embedded into objects) during computations is
constantly equal to 9. At the end of the computation, all these energy units are
embedded into the output values. The system is also reversible: it is immedi-
ately seen that if we inject into the skin the output triple just produced as the
result of a computation, the system will expel the corresponding input triple.
This behavior is trivially due to the fact that the Fredkin gate is self–reversible,
meaning that fg ◦ fg = id3 (equivalently, fg = fg−1), where id3 is the identity
function on {0, 1}3. Notice that, in general, this property does not hold for the
functions f : {0, 1}n → {0, 1}n computed by n–input reversible Fredkin circuits.
Indeed, f is self–reversible if and only if the permutation it applies on the set
{0, 1}n can be expressed as a composition of pairwise disjoint transpositions.
This means that in general the P system that simulates a given Fredkin circuit
must be appropriately designed in order to be self–reversible.

5 Simulation of Reversible Fredkin Circuits

Basing upon the simulation of the Fredkin gate we have exposed in the previous
section, let us sketch how any n–input reversible Fredkin circuit FCn can be sim-

Universal Families of Reversible P Systems 265

ulated by an appropriate energy–based P system Pn. Since families of reversible
Fredkin circuits can be used to compute any family {fn}n∈IN of n-ary boolean
functions in a reversible and conservative way, we conclude that (families of)
energy–based P systems are a universal model of computation.

Let L1, L2, . . . , Ld denote the layers of FCn, where d is the depth of the cir-
cuit. The objects of Pn are denoted by [b, i, j], where b ∈ {0, 1}, i ∈ {1, 2, . . . , n}
and j ∈ {1, 2, . . . , d + 1}. All these objects have energy equal to 3. Intuitively,
[b, i, j] indicates the presence of the boolean value b on the i-th input line of
the j-th layer of FCn. The system Pn is composed by a main membrane (the
skin) that contains a subsystem for each layer of FCn. At the beginning of the
computation objects [x1, 1, 1], [x2, 2, 1], . . . , [xn, n, 1] are injected into the skin,
where (x1, x2, . . . , xn) is the input n-tuple of FCn. The region associated to the
skin contains the rules:

[b, i, j]→ [b, i, j]Fj (2)

for every b ∈ {0, 1}, i ∈ {1, . . . , n} and j ∈ {1, . . . , d}, where Fj is the subsystem
that simulates the j-th layer Lj. The application of these rules makes the objects
representing the input values move into subsystem F1.

Let k1 be the number of gates in layer L1. The subsystem F1 contains k1

subsystems G1,1, G1,2, . . . , G1,k1 , each one simulating a Fredkin gate as indicated
in section 4. The only difference with the system presented in section 4 is that
the objects now have an additional component indicating the number of layer,
and when the results are expelled from subsystems G1,1, G1,2, . . . , G1,k1 such
component is incremented. Using rules of the kind [b, i, 1] → [b, i, 1]G1,ri

the
objects are dispatched to the correct subsystems that perform the simulations of
Fredkin gates. Eventually, after some time the objects corresponding to the result
of the computation performed by each gate of L1 leave the corresponding systems
G1,1, G1,2, . . . , G1,k1 , with the third component incremented by 1. These objects
are expelled from F1 through appropriate rules present in the corresponding
region. On the other hand, if a given object [b, i, 1] hasn’t to be processed by
a Fredkin gate (that is, the identity must be applied to it) then we simply add
the rule [b, i, 1]→ [b, i, 2]out to the region enclosed by membrane F1. As objects
[b, i, 2] are expelled from F1, rules (2) dispatch them to subsystem F2.

The simulation of FCn continues in this way until the objects [b, i, d + 1]
leave the subsystem Fd. In the region enclosed by the skin they activate rules of
the kind [b, i, d + 1] → [b, i, d + 1]out, that expel them into the environment as
the result of the computation performed by Pn.

The system Pn is conservative, since the amount of energy units present
into the system (both free and embedded into objects) during computations is
constantly equal to 3n. The number of rules and the number of membranes in
the system are directly proportional to the number of gates in FCn. Note that,
differently from the other approaches seen in literature, the depth of hierarchy
μ in system Pn is constant: in particular, it does not depend upon the number
of gates occurring in FCn.

266 A. Leporati, C. Zandron, and G. Mauri

5.1 Reverse Computations

Since the Fredkin circuit FCn is reversible, there exists a Fredkin circuit FC′
n

which computes the inverse function f−1
FCn

: {0, 1}n → {0, 1}n. This circuit can
be easily obtained from FCn by reversing the order of all layers. As a con-
sequence, for any P system Pn which simulates an n–input reversible Fredkin
circuit FCn there exists a corresponding P system P ′

n that simulates the inverse
Fredkin circuit. In this sense, Pn can be considered a “reversible” P system.

However we can do slightly better, making the P system Pn self–reversible,
that is, able to compute both fFCn and f−1

FCn
. We add a further component

k ∈ {0, 1} to the objects of Pn, which is used to distinguish between “forward”
and “backward” computations. Precisely, the objects which are used to compute
fFCn have k = 0, and those used to compute f−1

FCn
have k = 1. A forward

computation starts by injecting the objects [x1, 1, 1, 0], [x2, 2, 1, 0], . . . , [xn, n, 1, 0]
into the skin of Pn. The computation proceeds as described above, with the rules
modified in order to take into account the presence of the new component k = 0.
The objects produced in output are [y1, 1, d + 1, 0], . . . , [yn, n, d + 1, 0], where
(y1, . . . , yn) = fFCn(x1, . . . , xn).

Analogously, a “backward” computation should start by injecting the objects
[y1, 1, 1, 1], [y2, 2, 1, 1], . . . , [yn, n, 1, 1] into the skin. The computation of f−1

FCn
can

be accomplished by incorporating the rules of the region enclosed by the skin
and the subsystems of P ′

n (both modified in order to take into the account the
presence of the new component k = 1) into Pn. Interferences between the rules
concerning forward and backward computations do not occur since they act on
different kinds of objects.

A further improvement is obtained by observing that each layer of FCn is
self–reversible, and that the layers of FC′

n are the same as the layers of FCn, in
reverse order. Hence we can merge each subsystem Fj , which simulates layer Lj

of FCn, with the subsystem F ′
d−j+1, which simulates layer L′

d−j+1 of FC′
n. The

merge operation consists in putting the rules and the subsystems of F ′
d−j+1 into

Fj . Of course we have also to modify the rules in the region enclosed by the skin
so that the objects that were previously moved to F ′

d−j+1 are now dispatched
to Fj . Recursively, since each Fredkin gate is self–reversible, we can merge also
subsystems Gj,1, . . . , Gj,kj occurring into Fj with the corresponding subsystems
G′

d−j+1,1, . . . , G
′
d−j+1,kj

which occur into F ′
d−j+1. In this way, we obtain a self–

reversible P system which is able to compute both fFCn and f−1
FCn

. The new
system has the same number of membranes as Pn, and the double of rules.

5.2 Reducing the Number of Subsystems

As we have seen in the previous sections, the number of membranes and the
number of rules of the P system Pn that simulates the Fredkin circuit FCn

grow linearly with respect to the number of gates occurring in the circuit. This
means, in particular, that if the size of the family {FCn}n∈IN of Fredkin circuits
grows exponentially with respect to n, also the number of membranes in the
corresponding family {Pn}n∈IN of P systems will grow in an exponential way.

Universal Families of Reversible P Systems 267

Here we note that the number of membranes in Pn can, without loss of generality,
be assumed to be linear with respect to n, independently of the number of gates
occurring in the simulated Fredkin circuit FCn. To compensate the reduced
number of membranes, the number of rules in the system will grow accordingly.

For the sake of simplicity, let us consider only forward computations, in-
volving objects of the kind [b, i, j], with b ∈ {0, 1}, i ∈ {1, . . . , n} and j ∈
{1, . . . , d+1}. Every n–input reversible Fredkin circuit FCn can be “normalized”
by moving the Fredkin gates contained into each layer as upward as possible, as
depicted on the right of Figure 1. We call the resulting layers normalized layers.
In order to keep track of which input value goes into which gate, we precede
each normalized layer by a fixed permutation, which is simply realized by re-
arranging the wires as required. A final fixed permutation, occurring after the
last normalized layer, allows the output values of FCn to appear on the correct
output lines.

It is easily seen that the described normalization of FCn can be performed
in polynomial time with respect to n. Also, it is not difficult to prove that
the number of all possible n–input layers of Fredkin gates grows exponentially
with n, whereas the number of normalized layers is)n

3 *. We can thus number
all possible normalized layers with an index � ∈ {1, . . . ,)n

3 *} and describe a
normalized Fredkin circuit by a sequence of indexes �1, �2, . . . , �d together with
a corresponding sequence of fixed permutations π1, π2 . . . , πd+1.

The P system that simulates a normalized Fredkin circuit is thus composed
by)n

3 * subsystems F1, . . . , Fn/3�, each one capable to simulate a fixed normal-
ized layer of Fredkin gates. The region enclosed by the skin contains the rules
[b, i, j] → [b, πj(i), j]F�j

for all b ∈ {0, 1}, i ∈ {1, . . . , n} and j ∈ {1, . . . , d}, as
well as the rules [b, i, d + 1] → [b, πd+1(i), d + 1]out. These rules implement the
fixed permutations, move the objects to the subsystem that simulates the next
normalized layer, and expel the results of the computation into the environment.
The simulation of each normalized layer is analogous to the simulation of the
layers of a non normalized Fredkin circuit, as described above. Note that the ob-
jects emerge from subsystems F1, . . . , Fn/3� with the j component incremented
by 1, so that they are ready for the next computation step.

6 Conclusions

In this paper we have introduced energy–based P systems as P systems in which
the amount of energy manipulated during computations is taken into account.
We have also defined the notion of conservative energy–based P system.

We have shown how the Fredkin gate, as well as any n–input reversible
Fredkin circuit can be simulated with this new model of computation. The P
systems that perform these simulations turn out to be themselves reversible and
conservative. Moreover, we have shown that the simulating P systems can be
made self–reversible, and that the number of subsystems can be assumed to be
linear with respect to the number of input values, independently of the number
of gates occurring in the simulated Fredkin circuit.

268 A. Leporati, C. Zandron, and G. Mauri

Acknowledgments

The present paper has been inspired by [5] and by a discussion started by Fer-
nando Sancho Caparrini during the Second Brainstorming Week on Membrane
Computing, held in Seville from the 1st to the 7th of February 2004.

References

1. G. Alford. Membrane systems with heat control. In Pre–Proceedings of the Work-
shop on Membrane Computing, Curtea de Arges, Romania, August 2002.

2. J. D. Bekenstein. Energy Cost of Information Transfer. Physical Review Letters,
46(10):623–626, 1981.

3. C. H. Bennett. Logical reversibility of computation. IBM Journal of Research and
Development, 17:525–532, November 1973.

4. G. Cattaneo, A. Leporati, R. Leporini. Fredkin Gates for Finite–valued Re-
versible and Conservative Logics. Journal of Physics A: Mathematical and General,
35:9755–9785, November 2002.

5. R. Ceterchi, D. Sburlan. Simulating Boolean Circuits with P Systems. In Membrane
Computing, Proceedings of the International Workshop WMC 2003, Tarragona,
Spain, July 2003, LNCS 2933, Springer, 2003, pp. 104–122.

6. K. Erk. Simulating Boolean Circuits by Finite Splicing. In Proceedings of the
Congress on Evolutionary Computation, 2(6-9):1279–1285, IEEE Press, 1999.

7. E. Fredkin, T. Toffoli. Conservative Logic. International Journal of Theoretical
Physics, 21(3-4):219–253, 1982.

8. R. Freund. Energy–Controlled P Systems. In Membrane Computing, Proceedings of
the International Workshop WMC–CdeA 2002, Curtea de Arges, Romania, August
2002, LNCS 2597, Springer, 2002, pp. 247–260.

9. P. Frisco. The conformon–P system: a molecular and cell biology–inspired com-
putability model. Theoretical Computer Science, 312:295–319, 2004.

10. J.P. Klein, T.H. Leete, H. Rubin. A biomolecular implementation of logically re-
versible computation with minimal energy dissipation. Biosystems 52:15–23, 1999.

11. R. Landauer. Irreversibility and heat generation in the computing process. IBM
Journal of Research and Development, 5:183–191, 1961.

12. R. Landauer. Uncertainty principle and minimal energy dissipation in the com-
puter. International Journal of Theoretical Physics, 21(3-4):283–297, 1982.

13. M. Ogihara, A. Ray. Simulating Boolean Circuits on a DNA Computer. Tech. Re-
port 631, 1996. Available at: http://citeseer.nj.nec.com/ogihara96simulating.html

14. G. Păun. Computing with membranes. Journal of Computer and System Sciences,
1(61):108–143, 2000. See also Turku Centre for Computer Science – TUCS Report
No. 208, 1998.

15. G. Păun. Membrane Computing. An Introduction. Springer–Verlag, Berlin, 2002.
16. G. Păun, Y. Suzuki, H. Tanaka. P Systems with energy accounting. International

Journal Computer Math., 78(3):343–364, 2001.
17. C. A. Petri. Gründsatzliches zur Beschreibung diskreter Prozesse. In Proceedings of

the 3 rd Colloquium über Automatentheorie (Hannover, 1965), Birkhäuser Verlag,
Basel, 1967, pp. 121–140. English translation: Fundamentals of the Representation
of Discrete Processes, ISF Report 82.04, 1982.

18. The P systems Web page: http://psystems.disco.unimib.it/
19. H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer–

Verlag, 1999.

Solving 3CNF-SAT and HPP in Linear Time

Using WWW

Florin Manea1, Carlos Mart́ın-Vide2, and Victor Mitrana1,2

1 Faculty of Mathematics and Computer Science, University of Bucharest
Str. Academiei 14, 70109, Bucharest, Romania

flmanea@funinf.cs.unibuc.ro
2 Research Group in Mathematical Linguistics, Rovira i Virgili University

Pça. Imperial Tarraco 1, 43005, Tarragona, Spain
{cmv,vmi}@correu.urv.es

Abstract. We propose linear time solutions to two much celebrated
NP-complete problems, namely the 3CNF-SAT and the directed Hamil-
tonian Path Problem (HPP), based on AHNEPs having all resources
(size, number of rules and symbols) linearly bounded by the size of the
given instance. Surprisingly enough, the time for solving HPP does not
depend on the number of edges of the given graph. Finally, we discuss
a possible real life implementation, not of biological inspiration as one
may expect according to the roots of AHNEPs, but using the facilities
of the World Wide Web.

1 Introduction

The origin of networks of evolutionary processors (NEPs for short) is twofold. In
[7] we consider a computing model inspired by the evolution of cell populations,
which might model some properties of evolving cell communities at the syntac-
tical level. Cells are represented by words which encode their DNA sequences.
Informally, at any moment of time, the evolutionary system is described by a
collection of words, where each word represents one cell. Cells belong to species
and their community evolves according to mutations and division which are de-
fined by operations on words. Only those cells are accepted as surviving (correct)
ones which are represented by a word in a given set of words, called the genotype
space of the species. This feature parallels with the natural process of evolution.

On the other hand, a well-known architecture for parallel and distributed
symbolic processing, related to the Connection Machine [12] as well as the Logic
Flow paradigm [8], consists of several processors, each of them being placed in a
node of a virtual complete graph, which are able to handle data associated with
the respective node. Each node processor acts on the local data in accordance
with some predefined rules, and then local data becomes a mobile agent which
can navigate in the network following a given protocol. Only that data which
can pass a filtering process can be communicated among the processors. This
filtering process may require to satisfy some conditions imposed by the sending
processor, by the receiving processor or by both of them. All the nodes send

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 269–280, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

270 F. Manea, C. Mart́ın-Vide, and V. Mitrana

simultaneously their data and the receiving nodes handle also simultaneously all
the arriving messages, according to some strategies, see, e.g., [9,12].

Starting from the premise that data can be given in the form of words,
[5] introduces a concept called network of parallel language processors in the
aim of investigating this concept in terms of formal grammars and languages.
Networks of language processors are closely related to grammar systems, more
specifically to parallel communicating grammar systems [4]. The main idea is
that one can place a language generating device (grammar, Lindenmayer system,
etc.) in any node of an underlying graph which rewrites the words existing in
the node, then the words are communicated to the other nodes. Words can
be successfully communicated if they pass some output and input filter. More
recently, [6] introduces networks whose nodes are (standard) Watson-Crick D0L
systems which communicate each other either the correct words or the corrected
words.

In [1], we modify this concept in the following way inspired from cell biol-
ogy. Each processor placed in a node is a very simple processor, an evolutionary
processor. By an evolutionary processor we mean a processor which is able to
perform very simple operations, namely point mutations in a DNA sequence (in-
sertion, deletion or substitution of a pair of nucleotides). More generally, each
node may be viewed as a cell having genetic information encoded in DNA se-
quences which may evolve by local evolutionary events, that is point mutations.
Each node is specialized just for one of these evolutionary operations. Further-
more, the data in each node is organized in the form of multisets of words
(each word appears in an arbitrarily large number of copies), and all copies are
processed in parallel such that all the possible events that can take place do
actually take place. Obviously, the computational process described here is not
exactly an evolutionary process in the Darwinian sense. But the rewriting op-
erations we have considered might be interpreted as mutations and the filtering
process might be viewed as a selection process. Actually, many fitness functions
on words may also be defined by random-context conditions. Recombination
is missing but it was asserted that evolutionary and functional relationships
between genes can be captured by taking only local mutations into consider-
ation [15]. Consequently, hybrid networks of evolutionary processors might be
viewed as bio-inspired computing models. We want to stress from the very begin-
ning that we are not concerned here with a possible biological implementation,
though a matter of great importance. However, in the last section we discuss an
(im)possible and a bit funny implementation, not of biological inspiration as one
may expected according to the above considerations, but using WWW.

Our mechanisms introduced in [1] are further considered in [2] as language
generating devices and their computational power is investigated. Furthermore,
filters, based on the membership and random-context conditions, used in [5] are
generalized in some versions defined in [1,2,14]. More precisely, the new filters
are based on different types of random-context conditions. In the aforementioned
papers, the filters of all nodes are defined by the same random-context condition
type. Moreover, the rules are applied in the same manner in all the nodes. These

Solving 3CNF-SAT and HPP in Linear Time Using WWW 271

restrictions are discarded in [14] and [13]. By this reason, these networks were
called hybrid.

In [13], we consider time complexity classes defined on accepting hybrid net-
works of evolutionary processors (AHNEP) similarly to the classical time com-
plexity classes defined on the standard computing model of Turing machine. By
definition, AHNEPs are deterministic. We prove that NP equals the class of
languages accepted by AHNEPs in polynomial time.

In a series of papers, we present linear time solutions to some NP-complete
problems using generating hybrid networks of evolutionary processors (GHNEP).
Such solutions are presented for the Bounded Post Correspondence Problem in
[1], for the “3-colorability problem” in [2] (with simplified networks), and for the
Common Algorithmic Problem in [14].

This paper fits this line of research; we propose two linear time solutions
to two much celebrated NP-complete problems, namely the 3CNF-SAT and the
HPP, based on AHNEPs having all resources (size, number of rules and symbols)
linearly bounded by the size of the given instance. However, this paper presents
for the first time such solutions based on AHNEPs and not GHNEPs, and more
important, by the definition of AHNEPs, one can evaluate the descriptional
(number of nodes, rules, symbols) and computational (time) complexity of these
AHNEPs with respect to their input word which is actually the given instance
of the problem.

The paper is organized as follows. In the next section, we give the definition of
basic preliminary concepts as well as AHNEP. Then, the third section presents
a formal solution to 3CNF-SAT which runs in linear time on AHNEPs with
linearly bounded resources. A similar solution to HPP is presented in the next
section. These formal solutions are then “implemented” using the facilities of
World Wide Web. A brief conclusion ends the paper.

2 Basic Definitions

We start by summarizing the notions used throughout the paper. An alphabet is
a finite and nonempty set of symbols. The cardinality of a finite set A is written
card(A). Any sequence of symbols from an alphabet V is called word over V .
The set of all words over V is denoted by V ∗ and the empty word is denoted by
ε. The length of a word x is denoted by |x| while alph(x) denotes the minimal
alphabet W such that x ∈W ∗.

We say that a rule a → b, with a, b ∈ V ∪ {ε} is a substitution rule if both
a and b are not ε; it is a deletion rule if a �= ε and b = ε; it is an insertion rule
if a = ε and b �= ε. The set of all substitution, deletion, and insertion rules over
an alphabet V are denoted by SubV , DelV , and InsV , respectively.

Given a rule as above σ and a word w ∈ V ∗, we define the following actions
of σ on w:

272 F. Manea, C. Mart́ın-Vide, and V. Mitrana

• If σ ≡ a→ b ∈ SubV , then σ∗(w) =
{
{ubv : ∃u, v ∈ V ∗ (w = uav)},
{w}, otherwise

• If σ ≡ a→ ε ∈ DelV , then σ∗(w) =
{
{uv : ∃u, v ∈ V ∗ (w = uav)},
{w}, otherwise

σr(w) =
{
{u : w = ua},
{w}, otherwise σl(w) =

{
{v : w = av},
{w}, otherwise

• If σ ≡ ε→ a ∈ InsV , then

σ∗(w) = {uav : ∃u, v ∈ V ∗ (w = uv)}, σr(w) = {wa}, σl(w) = {aw}.
α ∈ {∗, l, r} expresses the way of applying a deletion or insertion rule to a word,
namely at any position (α = ∗), in the left (α = l), or in the right (α = r) end
of the word, respectively. For every rule σ, action α ∈ {∗, l, r}, and L ⊆ V ∗, we
define the α-action of σ on L by σα(L) =

⋃
w∈L σα(w). Given a finite set of

rules M , we define the α-action of M on the word w and the language L by:

Mα(w) =
⋃

σ∈M

σα(w) and Mα(L) =
⋃

w∈L

Mα(w),

respectively. In what follows, we shall refer to the rewriting operations defined
above as evolutionary operations since they may be viewed as linguistic formu-
lations of local DNA mutations. For two disjoint and nonempty subsets P and
F of an alphabet V and a word w over V , we define the predicates

ϕ(1)(w;P, F) ≡ P ⊆ alph(w) ∧ F ∩ alph(w) = ∅
ϕ(2)(w;P, F) ≡ alph(w) ⊆ P
ϕ(3)(w;P, F) ≡ P ⊆ alph(w) ∧ F �⊆ alph(w)
ϕ(4)(w;P, F) ≡ alph(w) ∩ P �= ∅ ∧ F ∩ alph(w) = ∅.

The construction of these predicates is based on random-context conditions
defined by the two sets P (permitting contexts/symbols) and F (forbidding con-
texts/symbols). Informally, the first condition requires that all permitting sym-
bols are and no forbidding symbol is present in w, the second one requires that
all symbols of w are permitting ones, while the last two conditions are weaker
variants of the first one such that some forbidding symbols may appear in w but
not all of them, and at least one permitting symbol appears in w, respectively.

For every language L ⊆ V ∗ and β ∈ {(1), (2), (3), (4)}, we define:

ϕβ(L,P, F) = {w ∈ L | ϕβ(w;P, F)}.

An evolutionary processor over V is a tuple (M,PI, FI, PO, FO), where:
– Either (M ⊆ SubV) or (M ⊆ DelV) or (M ⊆ InsV). The set M represents
the set of evolutionary rules of the processor. As one can see, a processor is
“specialized” in one evolutionary operation, only.
– PI, FI ⊆ V are the input permitting/forbidding contexts of the processor,
while PO,FO ⊆ V are the output permitting/forbidding contexts of the proces-
sor.

Solving 3CNF-SAT and HPP in Linear Time Using WWW 273

We denote the set of evolutionary processors over V by EPV . An accepting
hybrid network of evolutionary processors (AHNEP for short) is a 7-tuple Γ =
(V, U,G,N, α, β, xI , xO), where:

– V and U are the input and network alphabets, respectively, V ⊆ U .
– G = (XG, EG) is an undirected graph with the set of vertices XG and the

set of edges EG. G is called the underlying graph of the network.
– N : XG −→ EPU is a mapping which associates with each node x ∈ XG the

evolutionary processor N(x) = (Mx, P Ix, F Ix, POx, FOx).
– α : XG −→ {∗, l, r}; α(x) gives the action mode of the rules of node x on

the words existing in that node.
– β : XG −→ {(1), (2), (3), (4)} defines the type of the input/output filters

of a node. More precisely, for every node, x ∈ XG, the following filters are
defined:

input filter: ρx(·) = ϕβ(x)(·;PIx, F Ix),
output filter: τx(·) = ϕβ(x)(·;POx, FOx).

That is, ρx(w) (resp. τx) indicates whether or not the word w can pass the
input (resp. output) filter of x. More generally, ρx(L) (resp. τx(L)) is the set
of words of L that can pass the input (resp. output) filter of x.

– xI and xO ∈ XG is the input node, and the output node, respectively, of the
AHNEP.

We say that card(XG) is the size of Γ . If α(x) = α(y) and β(x) = β(y) for
any pair of nodes x, y ∈ XG, then the network is said to be homogeneous. In
the theory of networks some types of underlying graphs are common, e.g., rings,
stars, grids etc. Networks of evolutionary processors with underlying graphs
having these special forms have been considered in a series of papers [1,2,14,3].
We focus here on complete AHNEPs, i.e. AHNEPs having a complete underlying
graph denoted by Kn, where n is the number of vertices.

A configuration of an AHNEP Γ as above is a mapping C : XG −→ 2V ∗

which associates a set of words with every node of the graph. A configuration
may be understood as the sets of words which are present in any node at a
given moment. A configuration can change either by an evolutionary step or by
a communication step. When changing by an evolutionary step, each component
C(x) of the configuration C is changed in accordance with the set of evolutionary
rules Mx associated with the node x and the way of applying these rules α(x).
Formally, we say that the configuration C′ is obtained in one evolutionary step
from the configuration C, written as C =⇒ C′, iff

C′(x) = Mα(x)
x (C(x)) for all x ∈ XG.

When changing by a communication step, each node processor x ∈ XG sends
one copy of each word it has, which is able to pass the output filter of x, to all
the node processors connected to x and receives all the words sent by any node
processor connected with x providing that they can pass its input filter.

274 F. Manea, C. Mart́ın-Vide, and V. Mitrana

Formally, we say that the configuration C′ is obtained in one communication
step from configuration C, written as C � C′, iff

C′(x) = (C(x) − τx(C(x))) ∪
⋃

{x,y}∈EG

(τy(C(y)) ∩ ρx(C(y))) for all x ∈ XG.

Note that words which leave a node are eliminated from that node. If they
cannot pass the input filter of any node, they are lost.

Let Γ be an AHNEP, the computation of Γ on the input word w ∈ V ∗ is a
sequence of configurations C(w)

0 , C
(w)
1 , C

(w)
2 , . . ., where C

(w)
0 is the initial config-

uration of Γ defined by C
(w)
0 (xI) = w and C

(w)
0 (x) = ∅ for all x ∈ XG, x �= xI ,

C
(w)
2i =⇒ C

(w)
2i+1 and C

(w)
2i+1 � C

(w)
2i+2, for all i ≥ 0. Note that the two steps, evolu-

tionary and communication, are synchronized and they happen alternatively one
after another. By the previous definitions, each configuration C

(w)
i is uniquely

determined by the configuration C
(w)
i−1. Otherwise stated, each computation in

an AHNEP is deterministic. A computation as above immediately halts if one
of the following two conditions holds:

(i) There exists a configuration in which the set of words existing in the output
node xO is non-empty. In this case, the computation is said to be an accepting
computation.

(ii) There exist two consecutive identical configurations.

In the aforementioned cases the computation is said to be finite. The language
accepted by Γ is

L(Γ) = {w ∈ V ∗ | the computation of Γ on w is an accepting one}.

We define some computational complexity measures by using AHNEP as the
computing model. To this aim we consider a AHNEP Γ and the language L

accepted by Γ . The time complexity of the accepting computation C
(x)
0 , C(x)

1 ,
C

(x)
2 , . . . C(x)

m of Γ on x ∈ L is denoted by T imeΓ (x) and equals m. The time
complexity of Γ is the partial function from N to N,

T imeΓ (n) = max{T imeΓ (x) | x ∈ L(Γ), |x| = n}.

For a function f : N −→ N we define

TimeAHNEP (f(n)) = {L | L = L(Γ) for an AHNEP Γ with
T imeΓ (n) ≤ f(n) for some n ≥ n0}.

Moreover, we write PTimeAHNEP =
⋃
k≥0

TimeAHNEP (nk).

We recall the main result from [13]; the reader is referred to [10,11] for the
classical time and space complexity classes defined on the standard computing
model of Turing machine.

Theorem 1 [13] NP = PTimeAHNEP .

Solving 3CNF-SAT and HPP in Linear Time Using WWW 275

3 A Formal Solution to 3CNF-SAT in Linear Time Using
AHNEPs

This section presents a formal way of getting all solutions to an instance of 3CNF-
SAT using homogeneous AHNEPs. Satisfiability is perhaps the best studied
NP-complete problem because one arrives at it from a large number of practical
problems. It has direct applications in mathematical logic, artificial intelligence,
VLSI engineering, computing theory, etc. It can also be met indirectly in the
area of constraint satisfaction problems.

We are given a formula E in 3CNF with n variables and m clauses. The
problem asks whether or not there exists an assignment of the n boolean variables
such that the m clauses of 3 different variable each are all satisfied. In other
words, the formula E is a conjunction (i.e., ∧) of m clauses, with each being the
disjunction (i.e., ∨) of three different variables or their negations (i.e., .̄) from
a set of n variables. Let V be the set of variables, V = {x1, x2, . . . , xn} and
E = C1 ∧ C2 ∧ . . . Cm be a boolean formula in the 3CNF. The negation of a
variable xi is denoted by x̄i and each clause may be viewed as a word over the
alphabet V ∪ V̄ ∪ {∧,∨, (,)}, where V̄ = {x̄ | x ∈ V }. We define the alphabet

W = V ∪ {1} ∪ {[xi = 1], [xi = 0] | 1 ≤ i ≤ n} ∪ {(s(Ci)) | 1 ≤ i ≤ m},
where s is a finite substitution defined by s(y) = {0, y}, y ∈ V ∪ V̄ ,

s(◦) = {◦}, ◦ ∈ {∧,∨}.

We now consider the AHNEP

Γ = (V ∪ {(Ci) | 1 ≤ i ≤ m},W,K2n+2, N, α, β, In,Out),

where K2n+2 is the complete graph with 2n+ 2 nodes and the other parameters
are given in Table 1.

Node M PI FI PO FO α β

In ∅ ∅ W ∅ ∅ ∗ (1)
N(xi = 1) P (xi = 1) ∅ {[xi = 1], [xi = 0]} ∅ {xi} ∪ {(α) | xi ≺ α} ∗ (1)
N(xi = 0) P (xi = 0) ∅ {[xi = 1], [xi = 0]} ∅ {xi} ∪ {(α) | xi ≺ α} ∗ (1)

Out ∅ ∅ F (Out) ∅ W ∗ (1)

Table 1.

In this table, the following hold:

(i) 1 ≤ i ≤ n.
(ii) (α) is a generic symbol in the alphabet {(s(Cj)) | 1 ≤ j ≤ m} with the

substitution s from above.
(iii) P (xi = 1) = {xi → [xi = 1]} ∪ {(β) →

{
(gi(β)), if x̄i occurs in β
1, if xi occurs in β

, where

gi is a morphism defined by gi(x̄i) = 0 and gi(z) = z for all z ∈ (V ∪ V̄ ∪
{∧,∨, (,)}) \ {xi, x̄i}.

276 F. Manea, C. Mart́ın-Vide, and V. Mitrana

(iv) P (xi = 0) = {xi → [xi = 0]} ∪ {(α) →
{

(ḡi(β)), if xi occurs in β
1, if x̄i occurs in β

, where

ḡi is a morphism defined by ḡi(xi) = 0 and ḡi(z) = z for all z ∈ (V ∪ V̄ ∪
{∧,∨, (,)}) \ {xi, x̄i}.

(v) F (Out) = {(s(Cj)) | 1 ≤ j ≤ m, s is defined as above} ∪ {(0 ∨ 0 ∨ 0)}.
(vi) The relation xi ≺ α means that the symbol xi appears in the word α.

Let us outline the working mode of Γ on the input word

w = x1x2 . . . xn(C1)(C2) . . . (Cm).

For a better understanding we refer to the word x1x2 . . . xn as the n-prefix of w,
while (C1)(C2) . . . (Cm) is called the m-suffix of w. In the initial configuration
this word lies in the input node In. After an evolutionary step without any effect
on this word, a copy of w is sent to all the nodes excepting In. By the input
filter conditions, each node N(xi = 1) and N(xi = 0), 1 ≤ i ≤ n, receives a
copy of w, while the copies of w sent to the other nodes fail to pass their input
filter condition, hence they are lost. Let us follow a copy of w arrived in the
node N(xi = 1) for some 1 ≤ i ≤ n. This word remains here until the following
conditions are satisfied:

1. xi is replaced by [xi = 1] in the n-prefix of w.
2. Every occurrence of x̄i in any word Cj , 1 ≤ j ≤ m, is replaced by 0.
3. Every symbol in the m-suffix of w which contains xi is replaced by 1.

This phase takes 2ri + 1 steps (ri + 1 evolutionary steps and ri communication
ones), where ri is the number of occurrences of both xi and x̄i in the m-suffix
of w. Now a copy of

w′ = x1x2 . . . xi−1[xi = 1]xi+1 . . . xn(C′
1)(C

′
2) . . . (C

′
m)

is sent to every node. Here (C′
j) is either 1, if Cj contains xi, or (gi(Cj)), if x̄i

occurs in Cj , or (Cj), otherwise. Clearly, every node N(xk = 1) and N(xk = 0),
1 ≤ k �= i ≤ n, receives this word. After at most 2rk + 1 steps, where rk is the
number of occurrences of both xk and x̄k in the m-suffix of w (which is at least
the number of occurrences of both xk and x̄k in the m-suffix of w′) the resulting
word which has either [xk = 1] or [xk = 0] instead of xk and no occurrence of xk

and x̄k in any symbol from its m-suffix, is replicated and one copy is sent again
to all the nodes. This process lasts for at most 2n+ 2

∑n
j=1 rj = 2n+ 6m steps.

Then every word which does not contain any symbol from V in its n-prefix and
has the m-suffix 1m is simultaneously received by the output node Out and the
computation halts. Moreover, any other word is rejected by Out. It is plain that
if there are assignments which satisfy the formula E, the computation of Γ halts
as soon as Out receives at least one word having an n-prefix which gives such
an assignment. Such a computation lasts for at most 2n+ 6m+ 1 steps. If there
is no assignment satisfying E, then the computation of Γ halts after 2n + 6m
steps since C

(w)
2n+6m(y) = C

(w)
2n+6m+1(y) for any node y.

Solving 3CNF-SAT and HPP in Linear Time Using WWW 277

We want to stress that also the other resources of Γ are linearly bounded:
the number of symbols in W is 3n + 8m + 1 while the total number of rules is
2n + 6m. This follows immediately from the fact that each set P (xi = 1) and
P (xi = 0), 1 ≤ i ≤ n, has ri + 1 rules. It is worth mentioning the fact that
the underlying structure does not change if the number of variables in the given
instance remains the same. We also can say that the network, excepting the
input and output nodes, may be viewed as a “program”. In other words, the
underlying structure of Γ is common for any instance of 3CNF-SAT with a fixed
number of variables.

4 A Formal Solution to HPP in Linear Time Using
AHNEPs

The HPP is to decide whether or not a given directed graph has a Hamiltonian
path. A Hamiltonian path in a directed graph is a path which contains all vertices
exactly once. It is known that the HPP is an NP -complete problem. Let us
consider a directed graph G = (V,E), with V = {x1, x2, . . . , xn} for which we
are looking for a Hamiltonian path starting with x1. Assume that all edges going
out from the node xj , for some 1 ≤ j ≤ n, are

(xj , x
(j)
i1

), (xj , x
(j)
i2

), . . . , (xj , x
(j)
iki

) ∈ E.

First we define the alphabet

U = V ∪ E ∪ {[xi] | 1 ≤ i ≤ n} ∪ {[x, y] | (x, y) ∈ E}

and the the AHNEP

Γ = (V ∪ E,U,K2n+1,N , α, β, In,Out),

where K2n+1 is the complete graph with 2n+ 1 nodes and the other parameters
are given in Table 2.

Node M PI FI PO FO α β

In {x1 → [x1]} ∅ U ∅ ∅ ∗ (1)
N(xi) {xi → [xi]} {[xj , x

(j)
p] | {[xi]} U ∅ ∗ (4)

1 ≤ j ≤ n, x
(j)
p = xi}

N ′(xj) {(xj , x
(j)
it

)→ [xj , x
(j)
it

] | {[xj]} {[xj , x
(j)
it

] | ∅ ∅ ∗ (1)
1 ≤ t ≤ kj} 1 ≤ t ≤ kj}

Out ∅ ∅ V ∅ U ∗ (1)

Table 2.

Let us follow a computation of this AHNEP on the input word

x1x2 . . . xn(x1, x
(1)
i1

)(x1, x
(1)
i2

) . . . (x1, x
(1)
ik1

) . . . (xn, x
(n)
i1

)(xn, x
(n)
i2

) . . . (xn, x
(n)
ikn

).

278 F. Manea, C. Mart́ın-Vide, and V. Mitrana

The input word is referred as w. In the node In, x1 is replaced by [x1], the
new word w′ is sent out and N ′(x1) is the unique node that can receive it. Here
each symbol (x1, x

(1)
it

), with 1 ≤ t ≤ k1, is replaced in different copies of w′

by [x1, x
(1)
it

]. Now, each node N(xj) such that xj = x
(1)
it

receives exactly one
of the words going out from N ′(x1). Note that the number of words going out
from N ′(x1) is exactly k1. In every node N(xj), xj is replaced by [xj] and the
aforementioned process resumes. Note that for every node there exist exactly
two consecutive configurations in which that node has a nonempty set of words.
By these informal explanations, we infer that if π = x1xj1 . . . xjr is a path in G,
then

h(x1x2 . . . xn)α ∈ C
(w)
4r+1(N(xjr)),

where h is a morphism that replaces the symbols x1, xj1 , . . ., xjr by [x1], [xj1], . . .,
[xjr], respectively, and leaves unchanged the other symbols, while α ∈ (E ∪
{[x, y] | (x, y) ∈ E})+. Furthermore, α contains exactly r symbols from {[x, y] |
(x, y) ∈ E}, namely the copies of the symbols representing the edges of the path
π. Conversely, one can prove by induction on r that whenever such a word enters
a node N ′(x) or goes out from a node N(x), x1xjσ(1) . . . xjσ(r) is a path in G for
some permutation σ of the first r naturals. Since any word [x1][x2] . . . [xn]β is
accepted by Out, the correctness of our construction follows. More precisely,
there exists a configuration in which Out has at least one word if and only if G
has a Hamiltonian path.

Note that Γ halts after at most 4n steps, therefore Γ provides an answer in
O(n) time. This is quite surprising since the time needed by Γ for checking the
existence of a Hamiltonian path in G does not depend on the number of edges
of G. Finally, the number of symbols and rules of Γ is 2n + 2m and n + m,
respectively.

5 A(n) (Im)Possible Implementation of the Formal
Solutions Using E-mail

We refer to the solution for the 3CNF-SAT, a similar implementation for the
solution to HPP is obvious. We place in any node of the above network a person
who is writing e-mail messages. All the persons in the networks know each other
(they are friends) and each of them has the e-mail address of all the others stored
in his/her address book. For the given instance of 3CNF-SAT from above, the
network is formed by 2n+2 persons: let us call them by In, Out, True1, True2,
. . ., Truen, and False1, False2, . . ., Falsen. Each person Truei and Falsei

has configured his/her SPAM filter such that incoming messages are rejected if
they do not satisfy the random-context conditions determined by the forbidding
symbols in the sets FI from Table 1. This is an easy task since it requires just
to check the absence of some symbols from a finite set in the incoming messages.

By a bit more complicated procedure, each person can also configure his/her
e-mail software such that an outgoing message cannot be sent unless it satisfies
the random-context conditions defined by the sets FO in Table 1. Now the

Solving 3CNF-SAT and HPP in Linear Time Using WWW 279

working protocol is the following. Initially, In sends w to all his/her friends.
Every receiver waits for a predefined period of time until the messages sent
by his/her friends have been collected in his/her incoming box. This period is
settled such that it suffices for all persons. Then each person works in parallel
on his/her new incoming messages. Each message is modified in accordance with
the substitution rules defined by the sets M in Table 1. This phase lasts again
for a predefined period of time sufficiently long such that all persons can finish
their task within this period. Note that the synchronization is an important part
of the computation, however this phase can also be carried out by a not very
complicated software. Then, each of them sends simultaneously the modified
messages to the others and the process resumes. After a while this process halts
since Out, who has been counting the steps, sends simultaneously a message
asking for stopping the process to all the others as soon as either its incoming
box contains at least one message or the number of steps exceeded 2n + 6m.
If the incoming box of Out is non-empty, it contains at least one solution to
the given instance of 3CNF-SAT. The messages that were successfully sent are
stored in the outgoing box so that they do not appear in the incoming box
anymore. A small problem is represented by the messages that were sent but
rejected by some recipients which might come back in the incoming box. It is
easy to configure the e-mail software such that as soon as a message was sent it
cannot come back.

A serious problem is represented by the time needed for modifying the new
messages as well as the possibility of storing these messages since the number of
new messages received by each person is doubled in any step.

6 Conclusion

We presented formal solutions to two NP-complete problem, 3CNF-SAT and
HPP, running in linear time on AHNEPs. Then we discussed an (im)possible
implementation using the facilities of WWW. Note that the constructed AH-
NEPs are rather simple which proves once more that the computational power
of these devices is high. Actually, the problem of finding the class of all NP
problems that can be solved in linear time by AHNEPs with linearly bounded
resources seems to be quite attractive. We hope to return to this topic in a
forthcoming work.

References

1. J. Castellanos, C. Martin-Vide, V. Mitrana, J. Sempere, Solving NP-complete prob-
lems with networks of evolutionary processors, IWANN 2001 (J. Mira, A. Prieto,
eds.), LNCS 2084, Springer-Verlag, 2001, 621–628.

2. J. Castellanos, C. Martin-Vide, V. Mitrana, J. Sempere, Networks of evolutionary
processors, Acta Informatica 39(2003), 517-529..

3. J. Castellanos, P. Leupold, V. Mitrana, Descriptional and computational complex-
ity aspects of hybrid networks of evolutionary processors, Theoretical Computer
Science, in press.

280 F. Manea, C. Mart́ın-Vide, and V. Mitrana

4. E. Csuhaj-Varjú, J. Dassow, J. Kelemen, G. Păun, Grammar Systems, Gordon and
Breach, 1993.

5. E. Csuhaj-Varjú, A. Salomaa, Networks of parallel language processors. In: New
Trends in Formal Languages (G. Păun, A. Salomaa, eds.), LNCS 1218, Springer
Verlag, 1997, 299–318.

6. E. Csuhaj-Varjú, A. Salomaa, Networks of Watson-Crick D0L systems. In: Proc. In-
ternational Conference Words, Languages & Combinatorics III (M. Ito, T. Imaoka,
eds.), World Scientific, Singapore, 2003, 134–150.

7. E. Csuhaj-Varjú, V. Mitrana, Evolutionary systems: a language generating device
inspired by evolving communities of cells, Acta Informatica 36(2000), 913–926.

8. L. Errico, C. Jesshope, Towards a new architecture for symbolic processing. In
Artificial Intelligence and Information-Control Systems of Robots ’94 (I. Plander,
ed.), World Sci. Publ., Singapore, 1994, 31–40.

9. S. E. Fahlman, G. E. Hinton, T. J. Seijnowski, Massively parallel architectures for
AI: NETL, THISTLE and Boltzmann machines. In Proc. AAAI National Conf. on
AI, William Kaufman, Los Altos, 1983, 109–113.

10. J. Hartmanis, P.M. Lewis II, R.E. Stearns, Hierarchies of memory limited compu-
tations. Proc. 6th Annual IEEE Symp. on Switching Circuit Theory and Logical
Design, 1965, 179 - 190.

11. J. Hartmanis, R.E. Stearns, On the computational complexity of algorithms, Trans.
Amer. Math. Soc. 117 (1965), 533–546.

12. W. D. Hillis, The Connection Machine, MIT Press, Cambridge, 1985.
13. M. Margenstern, V. Mitrana, M. Perez-Jimenez, Accepting hybrid networks of

evolutionary processors, Pre-proccedings of DNA 10, 2004, 107–117.
14. C. Martin-Vide, V. Mitrana, M. Perez-Jimenez, F. Sancho-Caparrini, Hybrid net-

works of evolutionary processors, Proc. of GECCO 2003, LNCS 2723, Springer
Verlag, Berlin, 401 - 412..

15. D. Sankoff et al. Gene order comparisons for phylogenetic inference: Evolution of
the mitochondrial genome. Proc. Natl. Acad. Sci. USA, 89(1992) 6575–6579.

Completing a Code in a Regular Submonoid of

the Free Monoid

(Extended Abstract)

Jean Néraud

LIFAR, Université de ROUEN, Faculté des Sciences, Place É. Blondel, F-76821
MONT-SAINT-AIGNAN-CEDEX, FRANCE

Abstract. Let M be a submonoid of the free monoid A∗, and let X ⊂ M
be a (variable length) code. X is weakly M -complete iff any word in M
is a factor of some word in X∗ [NS 03]. In this paper, we are interested
by an effective computation of a weakly M -complete code containing
X. Given a regular submonoid and given a code X ⊂ M , we present a
method of completion which preserves the regularity of X.

Keywords: Words, free monoid, submonoid, code, automaton, completeness, density

1 Introduction

In the free monoid theory, the questions connected to maximality and complete-
ness of variable length codes (for short codes) play a prominent part. This is
due to their mathematical relevance just as much as their potential applications,
particularly in the framework of the theory of Information. A subset X of the
free monoid A∗ is complete if any word of A∗ is a factor of some word of X∗,
the submonoid generated by X . In this topic, one of the most notable results,
due to Schützenberger, states that, for the remarkable large family of thin codes
[BerP 85, p. 65], completeness and maximality are two equivalent notions. Based
on this fact, many fruiful studies have been drawn in various directions. In a large
lot of these studies authors have investigated whether the preceding equivalence
holds for special families of codes, e.g. [BerP 85, BrWZ 90, Br 98, Nh 01, NS 03].
The question of investigating local notions of completeness is also largely con-
cerned:

- In the topic of codes with constraints, that is strongly connected to sofic
systems [Bea 93], A. Restivo studies the class of the so-called local languages.
These languages are in fact the factorial subsets of the form T = A∗ \ A∗HA∗,
where H stands for a finite language. In such a context, given a code X ⊂ T , X is
T -complete iff F (X∗), the set of the factors of the words in X∗, is equal to F (T)
itself. As a matter of fact, in [R 90], the equivalence between T -completeness
and maximality in T is established for the so-called T -thin codes.

- The topic of infinitary languages is also concerned by another notion of
local completeness: given a language R ⊂ A∗, the problem consists in studying
the structure of languages G ⊂ A∗ such that Gω = Rω or, more generally,

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 281–291, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

282 J. Néraud

ωGω = ωRω, which is in fact equivalent to G∗ and R∗ having identical sets of
prefixes [LaT 86, LiT 87, Li 91] or factors [DevL 91]. Note that the elements of
the generating set G are not required to be words of R∗.

- Our paper deals with local completeness in an arbitrary submonoid M of
A∗: given a set X ⊂ M , X is weakly M -complete iff M and X∗ have identical
sets of factors. This notion is in fact more general than the notion of complete-
ness in a monoid as defined in [BerP 85]. Its introduction is justified by the fact
that, as explained in [R 89, R 90], given the language L(S) of the finite blocs of
a sofic system S, studying L(S)-completeness comes down to study complete-
ness in particular submonoids of L(S), i.e. the so-called stabilizers. Moreover, as
illustrated in [NS 03], many properties of codes in A∗, beginning by the famous
theorem of Shützenberger, may be established as consequences of more general
results from the framework of arbitrary submonoids. In this context, a natural
question consists in examining the existence of weakly M -complete codes, given a
submonoid M of A∗. In [BlH 85], a positive answer is given. In the case where M
is a regular submonoid, the existence of a prefix circular L(S)-complete code is
established in [Bea 93], moreover, according to [LaT 86, LiT 87, Li 91, NS 03A],
the existence of prefix (weakly) M -complete codes is decidable. However, the
existence of a regular weakly M -complete code itself remained an open question
[NS 03].

According to Zorn’s lemma, given an arbitrary submonoid M , and given a
code X ⊂ M , the family of codes X ′ that satisfy X ⊂ X ′ ⊂ M has a maximal
element. This proprety, conjugated with a result in [NS 03] allows to establish
(in a non constructive way) the existence, for any code X ⊂ M , of a weakly
M -complete code, namely X̂, such that X ⊂ X̂ ⊂M .
In our paper we consider the case where the submonoid has “finite rank”. This
notion of rank is in fact defined with respect to the minimal automaton with be-
havior M (which constitutes a canonical representation of M). It corresponds to
the smallest positive integer r such that a word w ∈ A∗ which satisfies |Q.w| = r
exists (where Q stands for the set of states). It is important to note that, with
this definition, states q ∈ Q such that q.w is not defined may exist. As a remark-
able example, any regular submonoid of A∗ has finite rank.
Given a submonoid with finite rank M ⊂ A∗, and given a code X ⊂ M , we
present a constructive method for embedding X in a weakly M -complete code,
namely X̂. As a direct consequence, since our computation preserves the regular-
ity of sets, given a regular submonoid M of A∗, a general formula for computing
a regular M -complete code is guaranteed: this brings an affirmative answer to
the question that we formulated in [NS 03].

2 Preliminaries

2.1 Definitions and Notations

We adopt the standard notations of the free monoid theory : given a word w in
A∗ (the free monoid generated by A), we denote by |w| its length, the empty
word being the word of length zero.

Completing a Code in a Regular Submonoid of the Free Monoid 283

Given two words u,w ∈ A∗, we say that u is a factor (internal factor, prefix,
proper prefix, suffix) of w iff we have w ∈ A∗uA∗ (A+uA+, uA∗, uA+, A∗u).
Given a subset X of A∗, we denote by F (X) (P (X), S(X)), the set of the words
that are factor (prefix, suffix) of some word in X .
Given a word w ∈ A+, its primitive root is the shortest word x such that w ∈ x+.
If w = x we say that w is primitive, otherwise it is imprimitive. The following
characterization of primitiveness is of folklore:

w ∈ A∗ is primitive ⇐⇒ w is not an internal factor of w2 (1)

Let U, V ⊂ A∗, and let w ∈ A∗. We say that w is U × V -overlapping if a pair of
words u ∈ U , v ∈ V exists, such that the three conditions u �= v, vw ∈ P (uw) and
u ∈ P (vw) hold. Otherwise, we say that w is U × V -overlapping free. Note that
the word w may be U × V -overlapping, unless it is V × U -overlapping. Clearly,
in the case where we have U = V = A∗, this notion of U ×V -overlapping comes
down to the classical notion of overlapping.

2.2 Density in a Submonoid of A∗

We assume the reader familiar with the fundamental concepts of the theory of
variable length codes, and we suggest that he refers to [BerP 85]. Let M be a
submonoid of A∗. As commented in [NS 03], different types of densities may be
defined in M . In our paper, we are interested by weak density. Note that this
notion is in fact more general that the algebraical concept of density as presented
in [BerP 85], in which a set X ⊂ M , is M -dense (M -complete) iff for any word
w ∈M , we have MwM ∩X �= ∅ (MwM ∩X∗ �= ∅).

Definition 1. Let M be an arbitrary submonoid of A∗, and let X ⊂M .
(1) X is weakly dense in M if for any word w ∈M we have A∗wA∗ ∩X �= ∅.
(2) X is strongly M -thin if a word w ∈M exists such that A∗wA∗ ∩X = ∅.
(3) X is weakly M -complete if X∗ is weakly dense in M .
(4) X is a M -maximal code iff it is a code, and for any code X ′ ⊂ M , if X ′

contains X, then we have X ′ = X.

As shown by the following result, for strongly M -thin sets the two notions of
weakly M -complete set and M -complete set are in fact equivalent:

Theorem 1. [NS 02] Let X ⊂ M a strongly M -thin set. Then X is weakly
M -complete iff for any word y ∈M , we have

(X∗y)+X∗ ∩X∗ �= ∅.

One of the most important results that illustrate the theory of codes is the
theorem of Schützenberger, that has been generalized to several classes of codes.
In particular:

284 J. Néraud

Theorem 2. [NS 03] Let M ⊂ A∗ be an arbitrary submonoid of A∗ and let X ⊂
M be a strongly M -thin code. Then the three following properties are equivalent:
(i) X is weakly M -complete
(ii) X is M -complete
(iii) X is a M -maximal code.

The proof of Theorem 2, lays upon Theorem 1, and the following technical lem-
mas, that are established in [NS 03]. These results will be of peculiar importance
in the sequel of the paper.

Lemma 1. [NS 03] Let X ⊂ M . If X is not weakly M -complete then for any
word t ∈M \F (X∗), a word z ∈M exists such that the two following conditions
hold:
(i) z and t have different primitive roots
(ii) For any integer k > |t|

|z| + 2, y = zkt is a primitive word.

Lemma 2. Let X ⊂M and let y ∈M \F (X∗) a primitive word. Then the word
z = y2 is a X∗ ×A∗-overlapping free word in M \ F (X∗).

Lemma 3. Any M -maximal code is weakly M -complete.

3 A Property of Submonoids with Finite Rank

3.1 The Case Where M Is a Free Submonoid of A∗

In such a condition, a coding isomorphism φ, from a free monoid B∗ onto M , ex-
ists. By applying the classical construction from [ER 83], a B∗-complete code Y
containing φ−1(X) exists. Recall that the computation makes use of the existence
of an overlapping free word y �∈ F (X∗) [BerP 85, p.10]. It consists in embedding
Y = φ−1(X) in the complete code Ŷ = Y ∪ y(V y)∗, with V = B∗ \ Y ∗ \B∗yB∗.
This leads to embed X itself in the (weakly) M -complete code X̂ = φ(Ŷ).

Example 1. Let A = {a, b} and let M = {anbn|n ≥ 1}∗. M is a free (bi-unitary)
submonoid of A∗, hence we may apply the preceding construction. Given the
code X = {aba2b2}, the computation yields to X̂ = X ∪ a3b3[(M \ X∗ \
Ma3b3M)a3b3]∗.

3.2 Words with Minimal Rank in a Submonoid of A∗

Let M be a free submonoid of A∗ and let X ⊂M be a code. According to Zorn’s
lemma, a M -maximal thus, according to Lemma 3, a weakly M -complete code
containing X exists. However, since the existence of a M ×M -overlapping free
word is not guaranteed in M , the method that we indicated above may not be
applied to explicitely construct such a code. The aim of Section 4 is to present
a method of completion in the case where M is a submonoid of A∗ with finite
rank. Regular submonoids consitute certainly the most famous examples of such

Completing a Code in a Regular Submonoid of the Free Monoid 285

submonoids. In Section 3, we dry a preliminary study of the so-called notion of
weak rank of a submonoid.

We assume the reader to be familiar with the basic notions concerning automata.
Many famous open questions are concerned by synchronization in automata.
C̆erný’s conjecture [Pi 78], and the topic of the so-called synchronizing codes
[BerP 85, p.115, 240, 331] [C 88] constitutes two classical examples.

Let A be a (non necessarily finite) deterministic trim automaton, with set of
states Q. Given a word w ∈ A∗, we define its rank by the positive integer
r(w) = |Q.w|. We set r(A) = min{r(w)|w ∈ A∗, r(w) ≥ 1}. It is important to
note that with this definition, states q ∈ Q may exist unless the transition q.w is
defined. In a natural way, the preceding definition may be extended to subsets
of A∗: given a subset L of A∗, we set r(L) = r(M), where M stands for the
minimal deterministic trim automaton whith behavior L.

In the sequel, we consider the case where L is a submonoid M of A∗.
We denote by i the initial state, and by T the set of terminal states in the cor-
responding minimal trim automaton. We assume that r(M) = r(M) < ∞. In
particular, this condition is satisfied by regular submonoids. Let u be a word
with minimal rank, and let q ∈ Q such that q.u �= ∅. Let us introduce some
notation:

Notation 1
1) Since the automaton M is trim, a pair of words u′, u” and a state t0 ∈ T

exist such that q = i.u′, and q.uu” = i.u′uu” = t0. We set:

y = u′uu” (2)

By construction, we have r(y) ≤ r(u), thus r(y) = r(u) = r(M).

2) We set:
Q0 = Q.y, T0 = Q.y ∩ T (3)

By definition, we have |T0| ≤ r(M).

3) Since A∗ operates on Q, with each word w ∈ A∗, we associate the unique
partial mapping fw : Q −→ Q that is defined by fw(q) = q.w.

Lemma 4. For any word α ∈ A∗, if we have αy ∈M , then fαy is a one-to-one
total mapping onto Q0.

Proof of Lemma 4. 1) The first step consists in establishing that, given two states
q, q′ ∈ Q0, for any word w ∈ A∗, we have q.w ∈ Q iff q′.w ∈ Q. By contradiction,
assume that a word w ∈ A∗ exists such that q.w ∈ Q and q′.w �∈ Q. Since we
have 1 ≤ |Q.yw| ≤ r(M)− 1, we contradict the minimality of r(y) = r(M).

286 J. Néraud

2) Let t0 ∈ T0 ⊂ Q0. Since we have αy ∈ M , we have t0.αy �= ∅ therefore,
according to 1), the partial mapping fαy is in fact defined for any state q ∈ Q0.
More precisely, we have fαy(Q0) ⊂ Q0.
3) Since r(w) = r(M) is finite, fαy is necessarily injective (otherwise, we have
r(y.αy) = |Q0.αy| < |Q0| = r(y)). Consequently, since Q0 is a finite set, fαy is
bijective.

Lemma 5. We have |T0|=1.

Proof of Lemma 5. Let q, q′ ∈ T0, and let α, β ∈ A such that q = i.αy, q′ = i.βy.
Without loss of generality we prove that, for any word u ∈ A∗, if i.αyu ∈ T , then
we have also i.βyu ∈ T . Assume that (i.αy).u ∈ T , thus αyu ∈M . According to
Lemma 4, and since Q0 is a finite set, an integer n exists such that (fαy)n = idQ0 .
As a consequence we have: (i.βy).u = (i.βy)(αy)nu = i.βy.(αy)n−1(αyu), thus
(i.βy).u ∈ T . Since M is a minimal automaton, the conclusion of Lemma 5
follows.

The following result constitutes an important step in the proof of Proposi-
tion 1:

Lemma 6. For any word α ∈ A∗, if αy ∈ M , then for any integer n ≥ 1, we
have i.(αy)n = i.αy.

Proof of Lemma 6. According to Lemma 4, a (minimal) positive integer n exists
such that (fαy)n = idQ0 . If n = 1, then the result is trivial. Assume that n ≥ 2.
By contradiction, we assume that an integer k ≥ 2 exists such that i.(αy)k �=
i.αy, and we consider a word u ∈ A∗ such that we have (i.αy).u ∈ T . Since we
have αy, αyu ∈M , we obtain:

i.(αy)k.u = i.(αy)k−1(αyu) ∈ T

Conversely, let u ∈ A∗ such that we have i.(αy)ku ∈ T .
Since we have αy, (αy)ku ∈M we obtain:

i.αyu = i.αy(αy)knu = i.αy(αy)k(n−1).(αy)ku ∈ T

Since we assume that i.αy �= i.(αy)k, this contradicts the minimality ofM.

As a consequence of the preceding lemmas, we obtain the following result:

Proposition 1. With the preceding notation, given a word y ∈ M \ F (X∗), if
r(y) = r(M) then a unique state t0 exists such that we have T0 = T∩Q.y = {t0}.
Moreover the four following properties hold:
(i) For any word α ∈ A∗, if αy ∈M , then we have i.αy = t0.αy = t0.
(ii) For any state q of M, a word α ∈ A∗ exists such that q.αy = t0.
(iii) For any word α ∈ A∗, if we have t0.αy = t0, then the word yαy belongs
to M .
(iv) For any word α ∈ A∗, if the word αy2 belongs to M , then the word αy
belongs also to M .

Completing a Code in a Regular Submonoid of the Free Monoid 287

Property (iv) is a consequence of Lemma 4. With Property (iii), it constitutes a
main step in the proofs of the results of Section 4.

4 A Method for Completing a Code in a Submonoid with
Finite Rank

With the notation of Section 3, we consider a word y ∈ M such that r(y) =
r(M). Let X ⊂ M be a non weakly M -complete code, and let t ∈ M \ F (X∗).
Since we have ty ∈ M \ F (X∗), according to Lemma 1, a word z ∈ M and an
integer k exist such that w = zk(ty) is a primitive word in M \F (X∗). Since we
have also w,w2 ∈ A∗y ∩M , we obtain:

r(w) = r(w2) = r(M) and i.w = i.w2 = t0. (4)

As a consequence, the results of Proposition 1 may be also formulated by sub-
stituting each of the words w,w2 to y. More precisely:

Corollary 1. With the preceding notation, the four following conditions hold:
(i) For any word α ∈ A∗, if we have αw ∈M , (αw2 ∈M) then we have also, for
any integer paar n, p ≥ 1, i.(αw)n = t0.(αw)p = {t0} (i.(αw2)n = t0.(αw2)p =
{t0}).
(ii) For any state q of M, a word α ∈ A∗ exists such that, for any positive
integer n, q.αwn = {t0}.
(iii) For any word α ∈ A∗, if we have t0.αw = t0, (t0.αw2 = t0) then we have
wαw ∈M (w2αw2 ∈M).
(iv) For any word α ∈ A∗, if we have αw2 ∈M , then we have also αw ∈M .

Moreover, according to Lemma 2, w2 is a X∗ × A∗ overlapping-free word. We
set:

Notation 2
y = w2.
N = (yA∗ ∩A∗y \A∗wy) ∩M
Y = N \ (N ∪X)(N ∪X)+

X̂ = X ∪ Y

By construction, we have ε �∈ N , thus ε �∈ Y . Moreover, by construction:

N ⊂ (X ∪ Y)∗ (5)

Clearly, the inclusion is strict. Finally, we note that we have y ∈ Y .

Proposition 2. With the preceding notation, X̂ is a code.

Proof Sketch of Proposition 2. We consider an arbitrary equation between the
words of X̂. We note that, since X is a code, without loss of generality we may
assume that at least one occurence of a word in Y occurs in at least one of the

288 J. Néraud

two sides of this equation. Moreover, since y is a factor of any word in Y no word
in Y may be a factor of a word in X∗. More precisely, a pair of words y1, y

′
1 ∈ Y

exists such that our equation takes the form:

x1y1 · · ·xnynxn+1 = x′1y
′
1 · · ·x′my′mx′m+1 xi, x

′
j ∈ X∗ yi, y

′
j ∈ Y (6)

Finally, without loss of generality, we assume that |x′1| ≤ |x1|.
By definition, we have y ∈ P (y1). Since we have y �∈ F (X∗), and according to
Lemma 2, we have in fact x1 = x′1.
Now, we consider the word y1 ∈ Y . Once more without loss of general-
ity, and by contradiction, we assume that |y′1| < |y1|. We examine the word
y′1x′2 · · ·x′my′mx′m+1. We set y′j = z2j−1 (1 ≤ j ≤ m) and x′j = z2j−2

(2 ≤ j ≤ m + 1), and we denote by k the greatest positive integer such that we
have y1 = z1 · · · zku, with zk, u �= ε. Since we assume that y1 ∈ Y , necessarily
we have u �∈ (X ∪ Y)+.
a) First, we assume that we have zk ∈ Y . We compare the length of u with the
four integers i|w| (0 ≤ i ≤ 3). In each of the corresponding cases, a combina-
toric study leads to contradicts either the definition of Y , or the fact that w is
a primitive word (cf (1)), or the fact that w cannot be a factor of a word in X∗.
In particular, in the case where |u| > 3|w|, Property (iii) from Corollary 1 plays
a promininent part to prove that y1 ∈ (X ∪ Y)(X ∪ Y)+, a contradiction with
the definition of Y ⊂ N .
b) Assuming that we have zk ∈ X∗, as in the preceding case (a), comparing the
length of |u| to i|w| (0 ≤ i ≤ 3) leads to similar contradictions. Finally, we obtain
y1 = y′1. By induction, we conclude that Equation (6) is necessarily trivial.

Proposition 3. With the preceding notation, X̂ is weakly M -complete.

Proof of Proposition 3. Since we have N ⊂ (X ∪ Y)∗, it suffices to prove that
any word u ∈M is a factor of a word in N .
Let u ∈M . Set u0 = yuy and denote by i0 the greatest positive integer such that
wi0 is a suffix of u0 (by construction, we have i0 ≥ 2). If we have i0 = 2, then by
definition, we obtain u0 ∈ N . Assume that i0 ≥ 3 and set u′

0 = u0w
−i0 . Since

we have u0 = u′
0w

i0−2w2 ∈ M , according to Corollary 1 (iv), each of the words
u′

0w
i0−1, u′

0w
i0−2, · · · , u′

0w
2 belongs to M . Moreover, by construction we have

u′
0w

2 ∈ yA∗∩A∗y \A∗wy. By definition, this implies u′
0 ∈ N . As a consequence,

we have u0 ∈ N.P (N), hence u0 ∈ P (N), thus u ∈ F (N).

The following statement synthetises the results of the two preceding propo-
sitions:

Theorem 3. Given a regular submonoid of A∗, each of the two following prop-
erties holds:
(i) A regular weakly M -complete code exists.
(ii) Any code X ⊂ M may be embedded in a weakly M -complete code X̂, with
respect to Notation 1. In particular, if X is regular, so is X̂.

Completing a Code in a Regular Submonoid of the Free Monoid 289

y1 ∈ Y

w w w w w w

u

zk+2 ∈ Yzk ∈ Y

Fig. 1. Proof of Proposition 2: the case where zk ∈ Y , with |u| > 3|w|. If
zk+1 �= ε, then by definition we have |u| < |zk+1|, which contradicts w �∈ F (X∗).
Consequently we obtain zk+1 = ε which, according to Corollary 1 (iii), implies
u ∈ N , thus y1 ∈ (X ∪ Y)(X ∪ Y)+.

Example 2. Let A = {a, b}, M = {a, ab, ba}∗, and X = {abaab}. In the minimal
deterministic automaton with behavior M , we have r(abba) = r(M) = 1. With
the previous notations, we have T0 = {t0} = {i} (cf Figure 4). The word bababa
is uncompletable in X∗ and y = bababa.abba is a primitive element of M . This
leads to compute the regular set X̂ as indicated above.

b

a

b a

a

2

1

i

Fig. 2. Automata of M in Example 2: Q.abba = {i}

Conclusion

In [BlH 85], the authors establish, in a constructive way, the existence of a weakly
M -complete code for an arbitrary submonoid of A∗. However, in any case the
resulting set is weakly M -dense. Recall that, according to [BerP 85, p. 224], any
regular set is very thin (i.e. X∗ �⊂ F (X)) moreover, according to [NS 03], for an
arbitrary subset of M , being very thin implies being strongly M -thin which im-
plies M -thin. Consequently, Property (i) from Theorem 3 brings an affirmative

290 J. Néraud

answer to the question of the existence of strongly M -thin weakly M -complete
codes [NS 03].
We note also that many topics of theoretical computer science are concerned
by our construction: in view of efficiently compute words of minimal rank, the
framework of synchronizing words and collapsing words is illustrated by pow-
erfull results [Pi 78, SaS 91] [ACV 03]. Clearly the computation of remarkable
uncompletables words is also concerned [NS 01].
Finally, we would like to mention that the question of M -completion may be
formulated for very classical and usefull classes of codes, such as prefix codes,
codes with finite deciphering delay or circular codes.

References

[ACV 03] Ananichev D.S., Cherubini A. and M.V. Volkov Image reducing words and
subgroups of free groups, Theoret. Comput. Sci. 307 (2003) 77-92.

[Bea 93] Béal M.-P., “Codage Symbolique”, Masson, 1993.
[BerP 85] Berstel J., and D. Perrin, “Theory of Codes” Academic Press, 1985.
[BlH 85] Blanchard F and G. Hansel, systèmes codés, Theoret. Comput. Sci. 44 (1986)

17-49.
[Br 98] On maximal codes with bounded synchronizing delay, Theoret. Comput. Sci

204 (1998), 11-28.
[BrLa 96] Bruyère V. and M. Latteux, Variable-Length Maximal Codes, Lecture Notes

Comput. Sci. 1099 (1996) 24-47.
[BrWZ 90] Bruyère V., Wang V. and L. Zhang, On completion of codes with decipher-

ing delay, European J. Combin. 11 (1990), 513-521.
[C 88] Carpi A., On synchronizing unambigous automata Theoret. Comput. Sci. 60

(1988) 285-296.
[DeFR 85] De Felice C. and A. Restivo, Some results on finite maximal codes, Theoret.

Info. and Appl. 19, 4 (1985), 383-403.
[DevL 91] Devolder J. and I. Litovsky, Finitely generated bi ω-languages, Theoret.

Comput. Sci. 85 (1991), 33-52.
[ER 83] Ehrenfeucht A and S. Rozenberg, Each regular code is included in a regular

maximal one, Theoret. Info. and Appl. 20, 1 (1985), 89-96.
[G 03] Guesnet Y., On maximal synchronous code, Theoret. Comput. Sci., 307 (2003)

129-138.
[LaT 86] Latteux M. and E. Timmermann, Finitely generated ω-languages, Info. Pro-

cess. Letter 23 (1986) 171-175.
[Li 91] Litovsky I., Prefix-free languages as ω-generators, Info. Process. Letters 37

(1991) 61-65.
[LiT 87] Litovsky I. and E. Timmerman, On generator of rationnal ω-languages, The-

oret. Comput. Sci. 53 (1987) 187-200.
[Lo 83] Lothaire M., “Combinatorics on Words”, Addison-Wesley, 1983.
[Nh 01] Nguyen Huong Lam, Finite maximal solid codes, Theoret. Comput. Sci 262

(2001) 333-347.
[NS 01] Néraud J and C. Selmi, On codes with a finite deciphering delay: constructing

uncompletable words, Theoret. Comput. Sci. 255 (2001), 152-162.
[NS 02] Néraud J. and C. Selmi, Locally complete sets and finite decomposable codes,

Theoret. Comput. Sci. 273 (2002) 185-196.

Completing a Code in a Regular Submonoid of the Free Monoid 291

[NS 03] Néraud J. and C. Selmi, A characterization of complete finite prefix codes
in arbitrary submonoids of A∗, Int. Journ. of Alg. and Comp. 13, No 5 (2003)
507-516.

[NS 03A] Néraud J. and C. Selmi, Free monoid theory: Maximality and completeness
in arbitrary submonoids, Jour. of Aut. Langu. and Comb., to appear.

[Pi 78] Pin J.E., le problème de la synchronization. Contribution à l’étude de la con-
jecture de C̆erný, Thèse de 3em cycle, Paris (1978).

[R 89] Restivo A., Finitely generated sofic systems, Theoret. Comput. Sci. 65 (1989),
265-270.

[R 90] Restivo A., Codes and local constraints, Theoret. Info. and Appl. 72 (1990),
55-64.

[RSS 89] Restivo A., Salemi S. and T. Sportelli, Completing codes, Theoret. Info. and
Appl. 23, 2 (1989), 135-147.

[SaS 91] Sauer N. and M.G. Stone, Composing functions to reduce image size, Ars.
Combin. 31 (1991) 171-176.

On Computational Universality in Language

Equations

Alexander Okhotin

School of Computing, Queen’s University, Kingston, Ontario, Canada K7L3N6
okhotin@cs.queensu.ca

http://www.cs.queensu.ca/home/okhotin/

Abstract. It has recently been shown that several computational mod-
els – trellis automata, recursive functions and Turing machines – admit
characterization by resolved systems of language equations with different
sets of language-theoretic operations. This paper investigates how sim-
ple the systems of equations from the computationally universal types
could be while still retaining their universality. It is shown that resolved
systems with two variables and two equations are as expressive as more
complicated systems, while one-variable equations are “almost” as ex-
pressive. Additionally, language equations with added quotient with reg-
ular languages are shown to be able to denote every arithmetical set.

1 Introduction

Language equations have been studied since the 1960s, when both finite au-
tomata [17] and context-free grammars [6,1] were given algebraic characteriza-
tions by resolved systems of language equations with union and concatenation
(one-sided in the case of finite automata). The following decades saw a certain
decline of interest in this mathematical object. Recently the interest in language
equations has renewed, with new results related to applied logic [2,19], biocom-
puting [7], language specification [12], systems design [18], as well as theoretical
work in the area [8,10,13].

One direction of theoretical research concerns characterizing models of com-
putation by language equations. Recently, trellis automata [4], a model of parallel
computation, were shown to be equivalent to resolved systems of language equa-
tions with union, intersection and linear concatenation [14], and thus to a class
of transformational grammars called linear conjunctive grammars [11,12]. Recur-
sive languages were characterized by unique solutions of systems with union, in-
tersection, complement and concatenation [13], while least and greatest solutions
of these systems define exactly the recursively enumerable and the co-recursively
enumerable sets, respectively.

In light of the recent research on minimal universal Turing machines [9]
and programmed grammars [5], the computational universality demonstrated
by language equations naturally raises the question of how complicated must a
system of language equations be in order to be able to denote every language

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 292–303, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Computational Universality in Language Equations 293

from one of these classes? How complicated a system has to be in order to
simulate any particular universal Turing machine?

For much weaker types of language equations, those equivalent to trellis au-
tomata, it has recently been proved that two equations with two variables are
always enough, while a single one-variable equation can denote a language closely
related to any given trellis language [15]. For the computationally universal lan-
guage equations, the original proof [13] yields systems of at least ten equations.
This paper aims to improve this result, using the one-nonterminal representation
of trellis automata [15] as the technical foundation.

2 Language Equations

Definition 1 (System of language equations). Fix a finite set of language-
theoretic operations, typically containing at least union and linear concatenation.
Let Σ be an alphabet. Let n � 1. Let X = (X1, . . . , Xn) be a set of language vari-
ables, which assume values of languages over Σ. Let ϕ1, . . . , ϕn be expressions
that depend upon the variables X and may contain these variables, the constant
languages {ε} and {a} (for all a ∈ Σ) and language-theoretic operations chosen
above. Then ⎧⎪⎨⎪⎩

X1 = ϕ1(X1, . . . , Xn)
...

Xn = ϕn(X1, . . . , Xn)

(1)

is called a resolved system of equations over Σ in variables X. A vector of lan-
guages L = (L1, . . . , Ln) is a solution of (1) if for every i the value of ϕi under
the assignment X1 = L1, . . . , Xn = Ln is Li.

A system may have no solutions, a unique solution, or multiple solutions.
Least and greatest solutions under the partial order of componentwise inclusion
are often considered. If all operations used in the right-hand sides of equations
in (1) are monotone (e.g., union, intersection, concatenation, quotient, homo-
morphism and so on, but not complement), then least and greatest solutions
are guaranteed to exist by a straightforward argument based upon the lattice-
theoretic fixed point theorem [1,12]. Least solutions are often used as a semantics
of such language equations [1,12] because of the natural correspondence to the
derivability in formal grammars.

Systems of language equations with union and unrestricted concatenation
are equivalent to context-free grammars in expressive power [6,1], and similarly
systems of language equations with union and linear concatenation are equiva-
lent to linear context-free grammars. It has recently been shown that systems
of language equations with union, intersection and concatenation are equivalent
to conjunctive grammars [11], which are context-free grammars with an explicit
intersection operation in the formalism of rules and with the machinery of deriva-
tion modified to implement this operation [12]. Systems of language equations
with union, intersection and linear concatenation have been proved to be equiv-
alent to trellis automata [4,12,14], a model of parallel computation, and to linear
conjunctive grammars [11].

294 A. Okhotin

The generative power of all of the mentioned classes does not go outside
context-sensitive languages. However, language equations with concatenation,
union, intersection and complement demonstrate computational universality [13]
in the sense that unique (least, greatest, resp.) solutions of systems of such equa-
tions can denote exactly the recursive (recursively enumerable, co-recursively
enumerable, resp.) sets. This paper presents a refinement of these results, repre-
senting arbitrary recursive, r.e. and co-r.e. sets with language equations of much
simplified structure. Trellis automata [4], their recently found representation by
language equations with union, intersection and linear concatenation [14] and
the related descriptional complexity results [15] will be essentially used for that
purpose. Let us give a short introduction to these concepts.

3 Trellis Automata and Their Algebraic Characterization

(Systolic) trellis automata [4] were introduced in early 1980s as a model of a
massively parallel system with simple identical processors connected in a uniform
pattern. Homogeneous trellis automata are a particular case of trellis automata,
in which the connections between nodes form a figure of triangular shape, as
shown in Figure 1. These automata are used as acceptors of strings loaded from
the bottom, and the acceptance is determined by the topmost element. In the
following they will be referred to as just trellis automata.

a1 a2 a3 a4

Fig. 1. Computation of a trellis automaton.

Following the notation of [14], define a trellis automaton as a quintuple
M = (Σ,Q, I, δ, F), where Σ is the input alphabet, Q is a finite nonempty
set of states (of processing units), I : Σ → Q is a function that sets the initial
states (loads values into the bottom processors), δ : Q × Q → Q is the transi-
tion function (the function computed by processors) and F ⊆ Q is the set of
final states (effective in the top processor). Given a string a1 . . . an (ai ∈ Σ,
n � 1), every node corresponds to a certain substring ai . . . aj (1 � i � j � n)
of symbols on which its value depends. The value of a bottom node correspond-
ing to one symbol of the input is I(ai); the value of a successor of two nodes
is δ of the values of these ancestors. Denote the value of a node correspond-
ing to ai . . . aj as Δ(I(ai . . . aj)) ∈ Q: here I(ai . . . aj) is a string of states (the

On Computational Universality in Language Equations 295

bottom row of the trellis), while Δ denotes the result (a single state) of a trian-
gular computation starting from a row of states. By definition, Δ(I(ai)) = I(ai)
and Δ(I(ai . . . aj)) = δ(Δ(I(ai . . . aj−1)), Δ(I(ai+1 . . . aj))). The language rec-
ognized by the automaton is defined as L(M) = {w |Δ(I(w)) ∈ F}.

The computational equivalence of trellis automata to language equations over
{∪,∩, lin·} follows from the following two theorems:

Theorem 1 ([14]). For every system of language equations Xi =
ϕi(X1, . . . , Xm) (1 � i � m) with union, intersection and linear concatena-
tion, such that L is the first component of its least solution, there exists and can
be effectively constructed a trellis automaton M , such that L(M) = L \ {ε}.

The proof of Theorem 1 essentially relies on the normal-form theorem for linear
conjunctive grammars [11] and then on subset construction [14]. Every state of
the constructed trellis automaton represents a set of nonterminals of a normal-
form linear conjunctive grammar, or, equivalently, a set of variables of a system
of language equations with restricted right-hand sides.

Theorem 2 ([14]). For every trellis automaton M = (Σ,Q, I, δ, F), there ex-
ists and can be effectively constructed a system of language equations Xi =
ϕi(X1, . . . , Xm) (1 � i � m) with union, intersection and linear concatenation,
such that the first component of its unique solution is L(M).

Theorem 2 can be proved by taking the set of variables {S} ∪ {Xq | q ∈ Q},
and then specifying the equation S =

⋃
q∈F Xq for the first variable, and the

equation Xq =
⋃

a∈Σ:
I(a)=q

a ∪
⋃

q1,q2∈Q:
δ(q1,q2)=q

⋃
b,c∈Σ

(
bXq2 ∩ Xq1c

)
for the variables

corresponding to the states of the automaton.
An important property of this language family is that it contains the language

of valid accepting computations of any Turing machine. Indeed, it is well-known
[3] that for every Turing machine T over an alphabet Σ each of the following
two languages is an intersection of two linear context-free languages

LAcc.Comp.T = {w%CT (w) | T halts on w and accepts} ⊆ (Σ ∪ {%} ∪ Γ)∗ (2a)
LRej.Comp.T = {w&CT (w) | T halts on w and rejects} ⊆ (Σ ∪ {&} ∪ Γ)∗ (2b)

for a suitable encoding CT : Σ∗ → Γ ∗ of a computations of T . This immediately
gives a linear conjunctive grammar for each of these languages [11], and hence
a trellis automaton or a system of language equations with union, intersection
and linear concatenation.

Let us state another result on this language family which provides the tech-
nical foundation for the constructions of this paper. Using the trellis automaton
representation, it was shown that the hierarchy of languages denoted by sys-
tems of n equations over {∪,∩, lin·} collapses, and every trellis language can
be denoted by a system of just two equations [15]. Given a trellis automaton M
with n states {q1, . . . , qn}, let d = 6n − 1 and consider the following auxiliary
language:

296 A. Okhotin

L′
M = Lcontrol ∪ Lleft ∪ Lright, where (3a)

Lcontrol = {w | |w| = 1 (mod d)}, (3b)
Lleft = {xw | |w| = 1 (mod d), |x| = 2n + 2i− 1,where Δ(I(w)) = qi}, (3c)
Lright = {wy | |w| = 1 (mod d), |y| = 2i− 1,where Δ(I(w)) = qi} (3d)

Theorem 3 ([15]). Let Σ be an alphabet, let $ /∈ Σ. Then for every trellis
automaton M there exist and can be effectively constructed:

1. a one-variable resolved language equation of the form X = ξ(X), where ξ
uses the operations of union, intersection and linear concatenation, that has
unique solution L(M)$ ∪ L′

M .
2. a resolved system of two language equations, X = ψ(Y) and Y = ϕ(Y),

where ϕ and ψ contain union, intersection and linear concatenation, which
has unique solution (L(M), L′

M).

Now everything is ready for constructing small computationally universal
language equations, which demonstrate the same expressive power as the systems
with quite a few variables constructed in a recent paper [13].

4 Constructing a Universal Language Equation

Theorem 4. For every Turing machine T over an alphabet Σ there exist and
can be effectively constructed an alphabet Σ′ ⊃ Σ and a language equation
X = ϕ(X) over Σ′ (where ϕ uses union, intersection, complement and con-
catenation), which has the least solution †L(T) ∪ L′ for some L′ ⊆ (Σ′ \ {†})∗.

Proof. Consider the language LAcc.Comp.T ⊆ Σ∗%Γ ∗ (2a) of accepting compu-
tations of T , where Γ is some alphabet used to represent these computations.
LAcc.Comp.T is linear conjunctive, and hence there exists a trellis automaton M
that accepts it [14].

Next, consider the auxiliary language L′
M (3) which encodes the computa-

tions of M . By Theorem 3, there exists a language equation X = ξ(X) over the
alphabet Σ ∪ Γ ∪ {%, $} that has the unique solution L(M)$ ∪ L′

M .
Consider the alphabet Σ ∪Γ ∪{%, $, †} and construct the language equation

X = ξ
(
X ∩ (Σ ∪ Γ ∪ {%, $})∗

)
∪
(
X ∩ †Σ∗) (4)

Note that the language (Σ ∪ Γ ∪ {%, $})∗ used in (4) is a regular language of
extended star height 0, and hence could be represented as required by Definition 1
(in this case, e.g., as (ε ∪ ε)†(ε ∪ ε)). Such representations will not be given in
the following, since they are not very readable, and at the same time can easily
be constructed if needed.

Let us prove that the set of solutions of (4) is

{†L ∪ L′ | L ⊆ Σ∗, L′ ⊆ (Σ ∪ Γ ∪ {%, $})∗ is a solution of X = ξ(X)} (5)

On Computational Universality in Language Equations 297

If L′ is a solution of X = ξ(X) and L ⊆ Σ∗, then ξ
(
(†L∪L′)∩(Σ∪Γ ∪{%, $})∗

)
=

ξ(L′) = L′, while (†L ∪ L′) ∩ †Σ∗ = †L. Hence, the union of these two sets is
L′ ∪ †L, showing that this is a solution of (4).

Conversely, if a language L0 satisfies (4), then

L0 = L′ ∪ †L, (6)

where L ⊆ Σ∗ and
L′ = ξ(L0 ∩ (Σ ∪ Γ ∪ {%, $})∗) (7)

Let us intersect both sides of (6) with (Σ ∪ Γ ∪ {%, $})∗, obtaining

L0∩ (Σ ∪Γ ∪{%, $})∗ = (L′∪†L)∩ (Σ∪Γ ∪{%, $})∗ = L′∩ (Σ ∪Γ ∪{%, $})∗ (8)

Now note that L′ ⊆ (Σ∪Γ ∪{%, $})∗ by (7) and by the monotonicity of ξ, which
prevents the symbol † from appearing in the strings from ξ(L0∩(Σ∪Γ ∪{%, $})∗).
Hence (8) can be simplified to L0∩(Σ∪Γ ∪{%, $})∗ = L′. Substituting the latter
for the argument of ξ in (7), we obtain that L′ = ξ(L′), or L′ is a solution of
X = ξ(X). Therefore, L0 is in (5).

Since X = ξ(X) is known to have a unique solution L(M)$∪L′
M , (5) can be

rewritten as
{†L ∪ L(M)$ ∪ L′

M | L ⊆ Σ∗}, (9)

which is hence the set of solutions of (4).
Now let us construct a new language equation for the same variable X to be

used in conjunction with (4), which will require that for every string w accepted
by T the string †w should be in X . This requirement is directly specified by this
inclusion [13]:

†LAcc.Comp.T ⊆ X%Γ ∗ (10)

Recalling that LAcc.Comp.T = L(M), and right-concatenating $ to both sides of
(10), this inclusion can be equivalently rewritten as

†L(M)$ ⊆ X%Γ ∗$ (11)

Since every solution (9) of the equation (4) yields L(M)$ when intersected with
(Σ ∪ Γ ∪ {%, $})∗$, (11) can be rewritten as an inclusion

†
(
X ∩ (Σ ∪ Γ ∪ {%, $})∗$

)
⊆ X%Γ ∗$ (12)

or as an implicit equation

†
(
X ∩ (Σ ∪ Γ ∪ {%, $})∗$

)
∩X%Γ ∗$ = ∅ (13)

The system comprised of a resolved equation (4) and an implicit equation
(13) has the set of solutions

{†L ∪ L(M)$ ∪ L′
M | L(T) ⊆ L ⊆ Σ∗}, (14)

and the least among these solutions is †L(T) ∪ L(M)$ ∪ L′
M .

The final step of the argument is to transcribe the system (4,13) as a single
resolved language equation, which will retain the set of solutions (14). Let us
prove this as an abstract claim, which will be reused in the subsequent proofs.

298 A. Okhotin

Claim 1 Let A be an alphabet, let ¢ /∈ A. Let η(X) and θ(X) be for-
mulae, such that η(L′) ⊆ A∗ and θ(L′) ⊆ A∗ for every L′ ⊆ (A ∪ {¢})∗.
Then

L = η(L) (15a)
θ(L) = ∅ (15b)

if and only if
L = η(L) ∪

(
L ∩ ¢θ(L)

)
(16)

Proof. ⇒© Using (15b), rewrite the right-hand side of (16) as L ∪ (L ∩¢∅) = L ∪∅ = L, and thus (16) holds.
⇐© Let L be a language that satisfies (16) and suppose there exists a
string w ∈ θ(L). Then ¢w ∈ L if and only if ¢w ∈ L∩¢θ(L) (by (16) and
by η(L) ⊆ A∗), which holds if and only if ¢w /∈ L and ¢w ∈ ¢θ(L), which
is equivalent to ¢w /∈ L and yields a contradiction. Hence, w /∈ θ(L) for
every w ∈ A∗, which means (15b).
Then (16) degrades to L = η(L), proving (15a) as well. ��

Resuming the proof of Theorem 4, let A = Σ ∪ Γ ∪ {%, $, †}, let

η(X) = ξ
(
X ∩ (Σ ∪ Γ ∪ {%, $})∗

)
∪
(
X ∩ †Σ∗) and let (17a)

θ(X) = †
(
X ∩ (Σ ∪ Γ ∪ {%, $})∗$

)
∩X%Γ ∗$ (17b)

Thus the system (4,13) has been represented in the form

X = η(X) (18a)
θ(X) = ∅ (18b)

Since η and θ satisfy the conditions of Claim 1, this claim states the equivalence
of (18) to X = η(X) ∪

(
X ∩ ¢θ(X)

)
, or, in the original notation,

X = ξ
(
X∩(Σ∪Γ∪{%, $})∗

)
∪(X∩†Σ∗)∪X∩¢

(
†
(
X∩(Σ∪Γ∪{%, $})∗$

)
∩X%Γ ∗$

)
where the formula ξ is given by Theorem 3. Being equivalent to the system
(4,13), this equation has the set of solutions (14), and hence

†L(T) ∪ L(M)$ ∪ L′
M (19)

is its least solution that satisfies the statement of the theorem, which is easily
seen by assuming Σ′ = Σ ∪ Γ ∪ {%, $, †, ¢} and L′ = L(M)$ ∪ L′

M . ��

Note that the least solution (19) of the constructed equation incorporates (a)
the language recognized by the given Turing machine T , (b) the language of ac-
cepting computations of this Turing machine, recognized by a trellis automaton
M constructed with respect to T , and finally (c) the language (3) that encodes
the operation of M , which in turn encodes the operation of T .

On Computational Universality in Language Equations 299

Since the equation uses only one variable, these two layers of “junk” left
by a double simulation cannot be stored anywhere else, and obtaining precisely
L(T) as a least solution of a single-variable language equation does not seem to
be possible using the suggested method. It is conjectured that some recursively
enumerable languages, including even quite simple ones, cannot be specified by
a single-variable language equation at all:

Conjecture 1. There exists no language equation X = ϕ(X) with set-theoretic
operations and concatenation, such that {anbncn | n � 0} is its unique, least or
greatest solution.

If more than one variable might be required to denote some languages pre-
cisely, the question is, how many? As in the case of language equations with
union, intersection and linear concatenation [15] (equivalent to trellis automata
and linear conjunctive grammars), there is no infinite hierarchy of n-variable
languages, as two variables turn out to be always sufficient:

Theorem 5. For every Turing machine T over an alphabet Σ there exist and
can be effectively constructed a resolved system of language equations of the form

Y = Y (20a)
X = ψ(X) (20b)

with set-theoretic operations and concatenation, which has the least solution
(L(T), †L(T) ∪ L′) for some L′ ⊆ (Σ′ \ {†})∗.

Proof. Let X = ϕ(X) be the equation given by Theorem 4, and consider the
inclusion X ∩ †Σ∗ ⊆ †Y . Together, they can be represented in the form

X = ϕ(X) (21a)

X ∩ †Σ∗ ∩ †Y = ∅ (21b)

The implicit equation (21b) specifies that for every string †w ∈ X , the string w
should be in Y . Hence, the least solution of (21) is, as requested, (L(T), †L(T)∪
L′).

It remains to represent (21) in the form of a single equation X = ψ(X), which
can be done according to Claim 1. Coupled with a dummy equation (20a), this
yields the resolved system (20) with the required least solution. ��

Theorems 4 and 5 claim the constructibility of a class of language equations
from a class of machines. Another noteworthy fact is the existence of one partic-
ular resolved one-variable language equation, which demonstrates computational
universality:

Proposition 1. Let T be a universal Turing machine over {0, 1}. Then the
language equation constructed for T by Theorem 4 can be called a universal
language equation.

300 A. Okhotin

Similarly to Theorem 4, co-recursively enumerable sets can be represented
by greatest solutions of one-variable language equations.

Theorem 6. For every TM T over an alphabet Σ there exist and can be effec-
tively constructed an alphabet Σ′ ⊃ Σ and a language equation X = ϕ(X) over
Σ′ (where ϕ uses union, intersection, complement and concatenation), which
has the greatest solution †(Σ∗ \ L(T)) ∪ L′ for some L′ ⊆ (Σ′ \ †)∗.

Proof (A sketch). Theorem 6 is proved very similarly to Theorem 4: first, a
trellis automaton M for LAcc.Comp.T and a language equation X = ξ(X) with
the unique solution L(M)$ ∪ L′

M are constructed. It is then transformed to an
equation (4) over Σ ∪ Γ ∪ {%, $, †}, which has the set of solutions (9).

Then the additional condition that for every string w accepted by T the
string †w should not be in X is specified (cf. the corresponding passage in the
proof of Theorem 4), which is done by the following inclusion [13]:

†LAcc.Comp.T ⊆ X%Γ ∗, (22)

This inclusion is then reformulated as an implicit equation in the same way as
(10) is rewritten as (13) in the proof of Theorem 4.

Using Claim 1, this pair of a resolved equation and an implicit equation is
converted to a single equation over the alphabet Σ ∪ Γ ∪ {%, $, †, ¢}. It has the
set of solutions

{†L ∪ L(M)$ ∪ L′
M | L ⊆ Σ∗ \ L(T)}, (23)

and the greatest among them is †L(T) ∪ L(M)$ ∪ L′
M . ��

In order to characterize recursive sets by one-variable language equations, let
us use the languages of accepting and rejecting computations of a single Turing
machine that halts on every input.

Theorem 7. For every TM T over an alphabet Σ that halts on every input
there exist and can be effectively constructed an alphabet Σ′ ⊃ Σ and a language
equation X = ϕ(X) over Σ′ (where ϕ uses union, intersection, complement and
concatenation), which has the unique solution †L(T)∪L′ for some L′ ⊆ (Σ′\†)∗.

Proof. The proof is slightly more complicated than the similar proofs of Theo-
rems 4 and 6. Given a Turing machine T that halts on every input, both the
languages LAcc.Comp.T ⊆ Σ∗%Γ ∗ (2a) and LRej.Comp.T ⊆ Σ∗&Γ ∗ (2b) will be
used.

Each of these languages is linear conjunctive. Therefore, their union,
LAcc.Comp.T ∪ LRej.Comp.T , is also linear conjunctive, and hence there exists a
trellis automaton M that recognizes this union. Consider the auxiliary language
L′

M (3) defined with respect to this trellis automaton, and the language equa-
tion X = ξ(X) over the alphabet Σ ∪ Γ ∪ {%, &, $} with the unique solution
L(M)$ ∪ L′

M = LAcc.Comp.T $ ∪ LRej.Comp.T $ ∪ L′
M , which can be constructed

according to Theorem 3.
Transform it to the equation

X = ξ
(
X ∩ (Σ ∪ Γ ∪ {%, $})∗

)
∪
(
X ∩ †Σ∗) (24)

On Computational Universality in Language Equations 301

over Σ ∪ Γ ∪ {%, &, $, †}, which has the set of solutions

{†L ∪ L(M)$ ∪ L′
M | L ⊆ Σ∗}, (25)

Now the following two conditions have to be specified: first, for every string
w ∈ Σ∗ accepted by T the string †w should be in X ; second, for every string
w ∈ Σ∗ rejected by T the string †w should not be in X . Since every string in Σ∗

is either accepted or rejected by T by assumption, this would completely define
L in (25), thus making the solution unique.

These conditions can be expressed by the following two inclusions [13]:

†LAcc.Comp.T ⊆ X%Γ ∗ (26a)

†LRej.Comp.T ⊆ X&Γ ∗ (26b)

As in the proof of Theorem 4, these inclusions can be rewritten in the form

†
(
X ∩ (Σ ∪ Γ ∪ {%, $})∗$

)
∩X%Γ ∗$ = ∅ (27a)

†
(
X ∩ (Σ ∪ Γ ∪ {&, $})∗$

)
∩X&Γ ∗$ = ∅, (27b)

or as a single implicit equation of this type:(
†
(
X∩(Σ∪Γ ∪{%, $})∗$

)
∩X%Γ ∗$

)
∪
(
†
(
X∩(Σ∪Γ ∪{&, $})∗$

)
∩X&Γ ∗$

)
= ∅

(28)
Using Claim 1, the pair of (24) and (28) can be rewritten as a resolved

equation X = ϕ(X) over the alphabet Σ∪Γ ∪{%, &, $, †, ¢}, which has the unique
solution †L(T) ∪ L(M)$ ∪ L′

M that satisfies the statement of the theorem. ��

5 Universality Results for Extended Classes of Language
Equations

Language equations with set-theoretic operations and concatenation can already
denote all recursive sets by their unique solutions. It is interesting to observe that
increasing the descriptive means of these language equations even slightly further
may explode their expressive power beyond expectations. Consider adding the
operation of quotient with regular languages (which, for instance, preserves the
class of context-free languages, and the class of recursively enumerable languages
as well), and behold universality of quite an unexpected kind:

Theorem 8. For every arithmetical set L ⊆ Σ∗ [16] there exists a one-variable
resolved language equation X = ϕ(X) with concatenation, set-theoretic opera-
tions and quotient with regular languages, such that the unique solution of this
equation is ‡L ∪ L′ for some L′ ⊆ (Σ′ \ {‡})∗.

Proof. A language is in the arithmetical hierarchy if and only if it can be repre-
sented in the following predicate form [16]:

{w |Q1x1 Q2x2 . . . Qnxn : R(w, x1, . . . , xn)} (Q1, . . . , Qn ∈ {∃, ∀}), (29)

302 A. Okhotin

where w, x1, . . . , xn are assumed to be strings over Σ, and R is an (n + 1)-ary
recursive predicate. Let us represent these (n + 1)-tuples of strings as strings,
using the flat sign ' as a separator. Let T is a Turing machine that halts on every
input and decides the predicate R under this encoding; L(T) ⊆ (Σ∪{'})∗. Then
(29) can be rewritten as follows:

{w |Q1x1 Q2x2 . . . Qnxn : w'x1' . . . 'xn ∈ L(T)} (Q1, . . . , Qn ∈ {∃, ∀}) (30)

By Theorem 7, there exists a language equation X = ϕ(X) over an alphabet
Σ′ ⊃ Σ ∪ {', †}, such that †L(T) ∪ L′ is its unique solution (for some L′ ⊆
(Σ′ \ {†})∗). Let us construct an expression ψ(X) that uses the operation of
quotient with regular languages, such that ψ(†L(T) ∪ L′) would equal the set
(30). This can be done inductively by representing each language

Lk = {w'x1' . . . 'xk |Qk+1xk+1 : . . . Qnxn w'x1' . . . 'xn ∈ L(T)} (31)

as ψk(†L(T)∪L′). The basis, k = n, is clear: Ln = L(T) = {†}−1 · (†L(T)∪L′),
hence ψn(X) = {†}−1 ·X . The induction step, k+1→ k, is based on the identity

Lk = {w'x1' . . . 'xk |Qk+1xk+1 : w'x1' . . . 'xk'xk+1 ∈ Lk+1} (32)

The cases of an existential and a universal quantifier are treated differently:

– If Qk+1 = ∃, then (32) can be simply expressed as the quotient Lk = Lk+1 ·
('Σ∗)−1. Define

ψk(X) = ψk+1(X) · ('Σ∗)−1 (33)

– If Qk+1 = ∀, the duality of the universal quantifier to the existential quanti-
fier can be used to obtain the following representation: Lk = {w'x1' . . . 'xk |
�xk+1 : w'x1' . . . 'xk'xk+1 /∈ Lk+1}. Then Lk = Lk+1 · ('Σ∗)−1 ∩Σ∗('Σ∗)k.
Define

ψk(X) = ψk+1(X) · ('Σ∗)−1 ∩Σ∗('Σ∗)k (34)

Now ψ0(†L(T)∪L′) gives the required representation of (30). It is left to combine
the equation X = ϕ(X) and the formula ψ0 into a single equation. This can be
done as follows:

X = ϕ(X ∩Σ′∗) ∪ ‡ψ0(X ∩Σ′∗), (35)

where ψ0 has been defined above, while ϕ comes from Theorem 7. The equation
(35) has the unique solution ‡L ∪ †L(T) ∪ L′, where L is the given arbitrary
arithmetical set. ��

In full, (35) is
‡L ∪ †L(T) ∪ L(M)$ ∪ L′

M , (36)

a fruit of a triple simulation: the language L is obtained from the recursive lan-
guage L(T) by quantification (Theorem 8), L(T) comes out of the trellis language
L(M) that encodes the accepting and the rejecting computations of T (Theo-
rem 7), while L(M) has its origin in the language L′

M of encoded computations
of M (Theorem 3).

On Computational Universality in Language Equations 303

These results show that resolved language equations with one variable demon-
strate various types of computational universality, which contributes to the the-
ory of language equations and establishes one more connection to the computa-
tion theory.

References

1. J. Autebert, J. Berstel, L. Boasson, “Context-free languages and pushdown au-
tomata”, in: Rozenberg, Salomaa (Eds.), Handbook of Formal Languages, Vol. 1,
Springer-Verlag, Berlin, 1997, 111–174.

2. F. Baader, R. Küsters, “Solving linear equations over regular languages”, Proceed-
ings of the 15th International Workshop on Unification (UNIF 2001, June 18-19,
2001, Siena, Italy), 27–31.

3. B. S. Baker, R. V. Book, “Reversal-bounded multipushdown machines”, Journal
of Computer and System Sciences, 8 (1974), 315–332.

4. K. Culik II, J. Gruska, A. Salomaa, “Systolic trellis automata”, I and II, Inter-
national Journal of Computer Mathematics, 15 (1984), 195–212; 16 (1984), 3–22.

5. H. Fernau, “Nonterminal complexity of programmed grammars”, Theoretical
Computer Science, 296 (2003), 225–251; also in MCU 2001.

6. S. Ginsburg, H. G. Rice, “Two families of languages related to ALGOL”, Journal
of the ACM, 9 (1962), 350–371.

7. L. Kari, G. Thierrin, “Maximal and minimal solutions to language equations”,
Journal of Computer and System Sciences, 53:3 (1996), 487–496.

8. J. Karhumäki, I. Petre, “Conway’s problem for three-word sets”, Theoretical Com-
puter Science, 289 (2002), 705–725.

9. M. Kudlek, Yu. Rogozhin, “A Universal Turing Machine with 3 States and 9 Sym-
bols”, Developments in Language Theory (Proceedings of DLT 2001, Vienna, Aus-
tria, July 16–21, 2001), LNCS 2295, 311–318.

10. E. L. Leiss, Language equations, Springer-Verlag, New York, 1999.
11. A. Okhotin, “Conjunctive grammars”, Journal of Automata, Languages and Com-

binatorics, 6:4 (2001), 519–535.
12. A. Okhotin, “Conjunctive grammars and systems of language equations”, Pro-

gramming and Computer Software, 28:5 (2002), 243–249.
13. A. Okhotin, “Decision problems for language equations with Boolean operations”,

Automata, Languages and Programming (ICALP 2003, Eindhoven, The Nether-
lands, June 30–July 4, 2003), LNCS 2719, 239–251; journal version submitted.

14. A. Okhotin, ‘‘On the equivalence of linear conjunctive grammars to trellis au-
tomata”, Informatique Théorique et Applications, 38 (2004), 69–88.

15. A. Okhotin, “On the number of nonterminals in linear conjunctive grammars”,
Theoretical Computer Science, 320:2–3 (2004), 419–448.

16. H. Rogers, Jr., Theory of Recursive Functions and Effective Computability,
McGraw-Hill, 1967.

17. A. Salomaa, Theory of Automata, Pergamon Press, Oxford, 1969.
18. N. Yevtushenko, T. Villa, R. K. Brayton, A. Petrenko, A. L. Sangiovanni-

Vincentelli, “Solution of parallel language equations for logic synthesis”, Proceed-
ings of ICCAD 2001 (San Jose, CA, USA, November 4–8, 2001), 103–110.

19. G.-Q. Zhang, “Domain mu-calculus”, Informatique Théorique et Applications, 37
(2003), 337–364.

Attacking the Common Algorithmic Problem by

Recognizer P Systems

Mario J. Pérez Jiménez and Francisco J. Romero Campero�

Dpto. Computer Science and Artificial Intelligence
E.T.S. Ingenieŕıa Informática. Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, España

{Mario.Perez, Francisco-Jose.Romero}@cs.us.es

Abstract. Many NP-complete problems can be viewed as special cases
of the Common Algorithmic Problem (CAP). In a precise sense, which
will be defined in the paper, one may say that CAP has a property of
local universality. In this paper we present an effective solution to the
decision version of the CAP using a family of recognizer P systems with
active membranes. The analysis of the solution presented here will be
done from the point of view of complexity classes in P systems.

Keywords: Membrane Computing, Common Algorithmic Problem, Cellular
Complexity Classes.

1 Introduction

Membrane Computing is an emergent branch of Natural Computing. This un-
conventional model of computation is a kind of distributed parallel system, and
it is inspired by some basic features of biological membranes.

Since Gh. Paun introduced it in [4], many different classes of such computing
devices, called P systems, have already been investigated. Most of them are
computationally universal, i.e., able to compute whatever a Turing machine can
do, as well as computationally efficient, i.e., are able to trade space for time and
solve in this way presumably intractable problems in a feasible time.

This paper deals with the Common Algorithmic Problem. This problem has
the nice property (we can call this property local universality) that several other
NP–complete problems can be reduced to it in linear time – we can say that
they are subproblems of CAP. This property was already considered in [2], will
be precisely defined in Section 2, and further illustrated in the paper.

Our study is focused on the design of a family of recognizer P systems solving
it. We have followed the ideas and schemes used to solve other numerical NP-
complete problems, such as Subsetsum in [6] and the Knapsack problem in [7].
� This work is supported by the Ministerio de Ciencia y Tecnoloǵıa of Spain, by

the Plan Nacional de I+D+I (2000–2003) (TIC2002-04220-C03-01), cofinanced by
FEDER funds, and by a FPI fellowship (of the second author) from the University
of Seville.

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 304–315, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Attacking the Common Algorithmic Problem by Recognizer P Systems 305

Due to the strong similarities of the design of these solutions the idea of a cellular
programming language seems possible as it is suggested in [1].

The analysis of the presented solution will be done from the point of view of
the complexity classes presented within the framework of the complexity classes
in P systems studied in [5] and [9].

The paper is organized as follows. In the next section the Common Algo-
rithmic Problem is presented as well as six NP-complete problems that can
be viewed as “subproblems” of it. Section 3 recalls recognizer P systems with
active membranes. In section 4 a polynomial complexity class for P systems is
briefly introduced. Sections 5, 6 and 7 present a cellular solution to the Common
Algorithmic Decision Problem. Conclusions are given in section 8.

2 The Common Algorithmic Problem

The Common Algorithmic Problem (CAP) [2] is the following: let S be a finite
set and F be a family of subsets of S. Find the cardinality of a maximal subset
of S which does not include any set belonging to F . The sets in F are called
forbidden sets.

The Common Algorithmic Problem is an optimization problem, which can
be transformed into a roughly equivalent decision problem by supplying a target
value to the quantity to be optimized, and asking the question whether or not
this value can be attained.

The Common Algorithmic Decision Problem (CADP) is the following: Given
S a finite set, F a family of subsets of S, and k ∈ N, we ask if there exists a
subset A of S such that |A| ≥ k, and which does not include any set belonging
to F .

Definition 1. We say that a problem X is a subproblem of another problem Y
if there exists a linear–time reduction from X to Y (using a logarithmic bounded
space).

That is, X is a subproblem of Y if we can pass from problem X to problem Y
through a simple rewriting process.

Next, we present some NP–complete problems that are subproblems of the
CAP (or CADP).

2.1 The Maximum Independent Set Problem

The Maximum Independent Set Problem (MIS) is the following: Given an undi-
rected graph G, find the cardinality of a maximal independent subset I of G.

The Independent Set Decision Problem (ISD) is the following: Given an undi-
rected graph G, and k ∈ N, determine whether or not G has an independent set
of size at least k.

Theorem 1. MIS (resp. ISD) is a subproblem of CAP (resp. CADP).

306 M.J. Pérez Jiménez and F.J. Romero Campero

2.2 The Minimum Vertex Cover Problem

The Minimum Vertex Cover Problem (MVC) is the following: Given an undi-
rected graph G, find the cardinality of a minimal set of a vertex cover of G.

The Vertex Cover Decision Problem (VCD) is the following: Given an undi-
rected graph G, and k ∈ N, determine whether or not G has a vertex cover of
size at most k.

Theorem 2. MVC (resp. VCD) is a subproblem of CAP (resp. CADP).

2.3 The Maximum Clique Problem

The Maximum Clique Problem (MAX-CLIQUE) is the following: Given an undi-
rected graph G, find the cardinality of a largest clique in G.

The Clique Decision Problem is the following: Given an undirected graph G,
and k ∈ N, determine whether or not G has a clique of size at least k.

Theorem 3. MAX-CLIQUE (resp. Clique Decision problem) is a subproblem
of CAP (resp. CADP).

2.4 The Satisfiability Problem

The Satisfiability Problem (SAT) is the following: For a given set U of boolean
variables and a finite set C of clauses over U , is there a satisfying truth assign-
ment for C?

Theorem 4. Let ϕ ≡ c1 ∧ · · · ∧ cp be a boolean formula in conjunctive nor-
mal form. Let Var(ϕ) = {x1, . . . , xn}, ci = li,1 ∨ · · · ∨ li,ri (1 ≤ i ≤ p), and
S = {x1, . . . , xn} ∪ {x1, . . . , xn}. For each i (1 ≤ i ≤ p) let Ai = {li,1, . . . , li,ri},
considering x = x. Let F = {{x1, x1}, . . . , {xn, xn}, A1, . . . , Ap}. Then the for-
mula ϕ is satisfiable if and only if the solution of the CAP on input (S, F) is n.

2.5 The Undirected Hamiltonian Path Problem

The Undirected Hamiltonian Path Problem is the following: Given an undirected
graph and two distinguished nodes u, v, determine whether or not there exists a
path from u to v visiting each node exactly once.

Theorem 5. Let G = (V,E) be an undirected graph, with V = {v1, . . . , vn}.
Then the following conditions are equivalent:

(a) The graph G has a Hamiltonian path from v1 to vn.
(b) The solution of the CAP on input (S, F) is n − 1, where: S = E, and

F =
⋃n

i=1 Fi, with Fi = {B : B ⊆ Bi |B| = 2}, for i = 1, n, and Fi = {B :
B ⊆ Bi ∧ |B| = 3}, for all 1 < i < n, with Bi = {{vi, u} : {vi, u} ∈ E}.

Attacking the Common Algorithmic Problem by Recognizer P Systems 307

2.6 The Tripartite Matching Problem

The Tripartite Matching Problem is the following: Given three sets B, G, and H,
each containing n elements, and a ternary relation T ⊆ B ×G ×H, determine
whether or not there exists a subset T ′ of T such that |T ′| = n and no two of
triples belonging to T ′ have a component in common.

We say that T ′ is a tripartite matching associated with (B,G,H, T).

Theorem 6. Let B = {b1, . . . , bn}, G = {g1, . . . , gn}, and H = {h1, . . . , hn}, be
sets containing n elements. Let T be a subset of B ×G×H. Then the following
conditions are equivalent:

(a) There exists a tripartite matching associated with (B,G,H, T).
(b) The solution of the CAP on input (S, F) is n, where S = T and F =⋃n

i=1(Fbi ∪Fgi ∪Fhi), with Fbi = {A : |A| = 2 ∧ A ⊆ {(bi, g, h) : (bi, g, h) ∈
T }}, Fgi = {A : |A| = 2 ∧ A ⊆ {(b, gi, h) : (b, gi, h) ∈ T }}, and Fhi =
{A : |A| = 2 ∧ A ⊆ {(b, g, hi) : (b, g, hi) ∈ T }}, for all 1 ≤ i ≤ n.

3 Recognizer P Systems with Active Membranes

Definition 2. A P system with input is a tuple (Π,Σ, iΠ), where: (a) Π is a
P system, with working alphabet Γ , with p membranes labelled by 1, . . . , p, and
initial multisetsM1, . . . ,Mp associated with them; (b) Σ is an (input) alphabet
strictly contained in Γ ; the initial multisets are over Γ − Σ; and (c) iΠ is the
label of a distinguished (input) membrane.

Let m be a multiset over Σ. The initial configuration of (Π,Σ, iΠ) with input
m is (μ,M1, . . . ,MiΠ ∪m, . . .Mp).

Definition 3. Let μ = (V (μ), E(μ)) be a membrane structure. The membrane
structure with environment associated with μ is the rooted tree such that: (a)
the root of the tree is a new node that we will denote env; (b) the set of nodes is
V (μ) ∪

{
env

}
; and (c) the set of edges is E(μ) ∪

{
{env, skin}

}
. The node env

is called the environment of the structure μ.

In the case of P systems with input and with external output, the concept
of computation is introduced in a similar way as for standard P systems – see
[3]– but with a slight change. Now the configurations consist of a membrane
structure with environment, and a family of multisets of objects associated with
each region and with the environment.

Next we introduce P systems able to accept or reject multisets considered
as inputs. Therefore, these systems will be suitable to attack the solvability of
decision problems.

Definition 4. A recognizer P system is a P system with input (Π,Σ, iΠ), and
with external output such that: (a) the working alphabet contains two distin-
guished elements Y ES, NO; (b) all its computations halt; and (c) if C is a com-
putation of Π, then either the object Y ES or the object NO (but not both) have
to be sent out to the environment, and only in the last step of the computation.

308 M.J. Pérez Jiménez and F.J. Romero Campero

Definition 5. We say that C is an accepting computation (respectively, rejecting
computation) if the object Y ES (respectively, NO) appears in the environment
associated with the corresponding halting configuration of C.
These recognizer P systems are specially adequate when we are trying to solve
a decision problem. In this paper we will deal with P systems with active mem-
branes. We refer to [3] (see chapter 7, section 7.2) for a detailed definition of
evolution rules, transition steps, configurations and computations in this model.

Let us denote by AM the class of recognizer P systems with active mem-
branes using 2-division (for elementary membranes).

4 The Complexity Class PMCF

Roughly speaking, a computational complexity study of a solution to a problem
is an estimation of the resources (time, space, etc) that are required through all
processes that take place in the way from the bare instance of the problem up
to the final answer.

The first results about “solvability” of NP–complete problems in polynomial
time (even linear) by cellular computing systems with membranes were obtained
using variants of P systems that lack an input membrane. Thus, the constructive
proofs of such results need to design one system for each instance of the problem.

This drawback can be easily avoided if we consider P systems with input.
Then, the same system could solve different instances of the problem, provided
that the corresponding input multisets are introduced in the input membrane.

Instead of looking for a single system that solves a problem, we prefer de-
signing a family of P systems such that each element of the family decides all
the instances of “equivalent size” of the problem.

Let us now introduce some basic concepts before the definition of the com-
plexity class itself.

Definition 6. Let L be a language, and Π = (Π(n))n∈N be a family of P sys-
tems with input. A polynomial encoding of L in Π is a pair (g, h) of polynomial-
time computable functions g : L →

⋃
n∈N IΠ(n) and h : L → N, such that for

every u ∈ L we have g(u) ∈ IΠ(h(u)).

That is, for each string u ∈ L, we have a multiset g(u) and a number h(u)
associated with it such that g(u) is an input multiset for the P system Π(h(u)).

Lemma 1. Let L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2 be languages. Let Π = (Π(n))n∈N a
family of P systems with input. If r : Σ∗

1 → Σ∗
2 is a polynomial time reduction

from L1 to L2, and (g, h) is a polynomial encoding of L2 in Π, then (g ◦ r, h ◦ r)
is a polynomial encoding of L1 in Π.

For a detailed proof, see [9].

Definition 7. Let F be a class of recognizer P systems. A decision problem X =
(IX , θX) is solvable in polynomial time by a family of P systems Π = (Π(n))n∈N

from F , and we denote this by X ∈ PMCF , if the following is true:

Attacking the Common Algorithmic Problem by Recognizer P Systems 309

– The family Π is consistent with regard to the class F ; that is, ∀t ∈ N (Π(t) ∈
F).

– The family Π is polynomially uniform by Turing machines; that is, there
exists a deterministic Turing machine constructing Π(t) from t in polynomial
time.

– There exists a polynomial encoding (g, h) from IX to Π such that:
• The family Π is polynomially bounded with regard to (X, g, h); that is,

there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(h(u)) with input g(u) is halting and, moreover, it per-
forms at most p(|u|) steps.
• The family Π is sound with regard to (X, g, h); that is, for each u ∈ IX ,

if there exists an accepting computation of Π(h(u)) with input g(u), then
θX(u) = 1.
• The family Π is complete with regard to (X, g, h); that is, for each u ∈
IX , if θX(u) = 1, then every computation of Π(h(u)) with input g(u) is
an accepting one.

In the above definition we have imposed to every P system Π(n) to be confluent,
in the following sense: every computation with the same input produces the same
output; that is, for every input multiset m, either every computation of Π(n)
with input m is an accepting computation, or every computation of Π(n) with
input m is a rejecting computation.

Proposition 1. Let F be a class of recognizer P systems. Let X,Y be problems
such that X is reducible to Y in polynomial time. If Y ∈ PMCF , then X ∈
PMCF .

For a detailed proof, see [9].

5 Solving CADP by Recognizer P Systems

We will address the resolution of this problem via a brute force algorithm, in
the framework of recognizer P systems with active membranes using 2-division,
and without cooperation nor priority among rules. Our strategy will consist in
the following phases:

– Generation stage:
1. At the beginning there will be only one internal membrane which will

represent the set A = S.
2. For each subset B ∈ F do:

if B ⊆ A then
for each e ∈ B do:
Using membrane division generate one membrane
representing the subset A− { e }

end if
– Calculation stage: In this stage the system calculates the cardinality of the

subset associated with each membrane.

310 M.J. Pérez Jiménez and F.J. Romero Campero

– Checking stage: Here the system checks whether or not the cardinality of
each generated subset exceeds the goal k.

– Output stage: According to the previous stage, one object Y ES or one object
NO is sent out to the environment.

Now we construct a family of P systems with active membranes using 2-division
solving the Common Algorithmic Decision Problem.
Let us consider a polynomial bijection, 〈 〉, between N3 and N (e.g., 〈x, y, z 〉 =
〈 〈x, y 〉, z 〉) induced by the pair function 〈x, y〉 = (x + y) · (x + y + 1)/2 + x).

The family of P systems with input considered here is
Π = { (Π(〈n,m, k〉), Σ(n,m, k), i(n,m, k)) : (n,m, k) ∈ N3 }

For each (n,m, k) ∈ N3, we have Σ(n,m, k) = { sij : 1 ≤ i ≤ m, 1 ≤ j ≤ n},
i(n,m, k) = 2, and Π(〈n,m, k〉) = (Γ (n,m, k), {1, 2}, μ,M1,M2, R) is defined
as follows:

– Working alphabet:

Γ (n,m, k) = Σ(n,m, k) ∪ {ai : 1 ≤ i ≤ m } ∪ {ci : 0 ≤ i ≤ 2n + 1 }
∪ {chi : 0 ≤ i ≤ 2k + 1 } ∪ {fj : 1 ≤ j ≤ n + 1 }
∪ {ei, j, l : 1 ≤ i ≤ m, 1 ≤ j ≤ n,−1 ≤ l ≤ j + 1 }
∪ {gj : 0 ≤ j ≤ nm + m + 1 }
∪ {z, s+, s−, S+, S−, S, o, Õ, O, p, t, neg, i1, i2}
∪ {Y ES0, Y ES1, Y ES2, Y ES, preNO, NO }.

– Membrane structure: μ = [[]2]1 (we will say that every membrane with
label 2 is an internal membrane).

– Initial multisets: M1 = ∅; M2 = {g0, z
m, sn

+, o
k}.

– The set of evolution rules, R, consists of the following rules:
(1) [s1, j → fj]02 , for 1 ≤ j ≤ n,

[si, j → ei, j, j]02 , for 2 ≤ i ≤ m, 1 ≤ j ≤ n.
The objects si, j encode in the initial configuration the forbidden sets. The
presence of an object si, j indicates that sj ∈ Bi. The objects of type f
represent the elements of the forbidden set that is being analized and the
objects e represent the rest of the forbidden sets.
(2) [f1]02 → [&]02 [s−]+2 .
The goal of these rules is to generate membranes for subsets A of S such
that ∀B ∈ F (B � A). The system, in order to ensure the condition B � A,
eliminates from A one element of the forbidden set B.
(3) [fj′ → fj′−1]02 , for 2 ≤ j′ ≤ n + 1,

[ei, j, l → ei, j, l−1]02 , for 2 ≤ i ≤ m, 1 ≤ j ≤ n, 0 ≤ l ≤ j + 1.
During the computation for a forbidden subset, B, the above rules perform
a rotation of the subscript of the objects f and of the third subscript of
the objects e. These subscripts represent the order in which the elements are
considered to be eliminated from the subset A associated with the membrane
in order to ensure the condition B � A.
(4) [fj′ → &]+2 , for 1 ≤ j′ ≤ n + 1,

[ei, j, 0 → ai−1]+2 , for 2 ≤ i ≤ m, 1 ≤ j ≤ n.

Attacking the Common Algorithmic Problem by Recognizer P Systems 311

When the polarization of an internal membrane is positive during the gen-
eration stage the associated subset A fulfills the condition B � A, where B
is the forbidden set that is being analized. In this situation the elements of
the current forbidden set are erased by these rules. Moreover, if the element
removed from A is a member of the forbidden set Bi, then the object ai−1

appears in the membrane to certify that the associated subset also fulfills
the condition Bi � A.
(5) [ei, j,−1 → ei−1, j, j+1]+2 , for 3 ≤ i ≤ m , 1 ≤ j ≤ n,

[ei, j, l → ei−1, j, j+1]+2 , for 3 ≤ i ≤ m , 1 ≤ j ≤ n , 1 ≤ l ≤ j + 1,
[e2, j, l → fj+1]+2 , for 1 ≤ j ≤ n , 1 ≤ l ≤ j + 1,
[e2, j,−1 → fj+1]+2 , for 1 ≤ j ≤ n,
[ai′ → ai′−1]+2 , for 2 ≤ i′ ≤ m.

In order to continue the computation for the next forbidden subset B, these
rules perform a rotation of the subscripts of the objects e and a. Note that
the subscript representing the position of the element to be analized is set
one position ahead in order to allow the system to check whether the current
associated subset A satisfies the condition B � A.
(6) [a1]02 → & []+2 ; [a1 → &]+2 .
The presence of object a1 in a neutrally charged internal membrane means
that the forbidden set which is going to be analized already satisfies the
condition B � A; consequently this object changes the polarization of the
membrane to positive in order to skip the computation for this forbidden
subset.
(7) [z]+2 → & []02.
The object z sets the polarization of the internal membranes to neutral once
the generation stage for one forbidden set has taken place.
(8) [gj → gj+1]02, [gj → gj+1]+2 , for 0 ≤ j ≤ nm + m,

[gnm+m+1 → neg, c0]02.
The objects g are counters used in the generation stage.
(9) [neg]02 → & []−2 , [z]−2 → &.
The multiplicity of the object z represents the number of forbidden sets that
do not satisfy the condition B � A. So, if there is an object z in an internal
membrane when the generation stage is over, then the membrane is dissolved.
(10) [s+ → S+]−2 , [s− → S−]−2 , [o → Õ]−2 .
The multiplicity of the object s+ represents the cardinality of S, the multi-
plicity of the object s− represents the number of removed elements from S
and the multiplicity of the object o represents the constant k. At the begin-
ing of the calculation stage the objects s+, s−, and o are renamed to S+, S−,
and Õ in order to avoid the interference with the previous stage.
(11) [S−]−2 → & []+2 , [S+]+2 → &[]−2 .
These rules are used to calculate the cardinality of the subsets associated
with the internal membranes.
(12) [ci → ci+1]−2 , [ci → ci+1]+2 , for 0 ≤ i ≤ 2n,

[c2n+1 → t, ch0]−2 .
The objects c are counters used in the calculation stage.
(13) [t]−2 → & []02, [S+ → S]02, [Õ → O]02.

312 M.J. Pérez Jiménez and F.J. Romero Campero

The object t will change the polarization of the internal membranes to neu-
tral starting the checking stage. In this stage the objects S+ and Õ are
renamed to S and O, in order to avoid the interference with the previous
stages.
(14) [S]02 → & []+2 , [O]+2 → & []02
These rules are used to compare the multiplicity of the objects S and O.
(15) [chi → chi+1]02, [chi → chi+1]+2 , 0 ≤ i ≤ 2k.
The objects ch are counters in the checking stage.
(16) [ch2k+1]+2 → Y ES0 []−2 , [ch2k+1 → p, i1]02.
The checking stage finishes when the object ch2k+1 appears in the internal
membranes. These rules are used to send the object Y ES0 to the skin, if the
charge is positive, and to check whether the answer must be NO.
(17) [p]02 → & []+2 , [i1 → i2]+2 ,

[i2]+2 → Y ES []−2 , [i2]02 → preNO []−2 .
These rules decide if there are any objects O in the internal membranes when
the checking stage is over, in order to send out the right answer.
(18) [Y ESi → Y ESi+1]01 , for 0 ≤ i ≤ 1,

[Y ES2 → Y ES]01, [preNO → NO]01.
These rules are used to sinchronize the output stage.
(19) [Y ES]01 → Y ES []+1 , [NO]01 → NO []−1 .
These rules send out the answer to the environment.

6 An Overview of the Computation

First of all we define a polynomial encoding for the CADP in Π in order to
study its computational complexity. Let h(u) = 〈n, m, k 〉 and g(u) = { si, j :
sj ∈ Bi }, for a given CADP–instance u = ({ s1, . . . , sn }, (B1, . . . , Bm), k).
Next we informally describe how the system Π(h(u)) with input g(u) works.

In the first step of the computation, according to the rules in (1), the objects
s evolve to the objects f and e. The objects f represent the elements of the
forbidden set that is being analized and the objects e represent the others.

The generation stage takes place following the rules from group (2) - (8).
The systems generates subsets of S with the greatest possible cardinalities and
associates them with internal membranes. Let us describe the evolution of the
subsets associated with internal membranes during the generation stage.

The subset associated with the initial internal membrane is A = S.
When the object f1 appears in a neutrally charged internal membrane, during

the generation stage for a forbidden set B, using the rule in (2) the system produ-
ces two new membranes: one (positively charged) where the analized element is
removed, and another one (neutrally charged) where an element of B (different
from f1) is removed in order to achieve the condition B � A. These two new
membranes behave in a different way.

On the one hand in order to study the next element, in the neutrally charged
membrane the rules in (3) perform a rotation of the subscript of the objects f
and of the third subscript of the objects e, which represent the order in which
the elements are considered.

Attacking the Common Algorithmic Problem by Recognizer P Systems 313

On the other hand, in the positively charged membrane an object s− appears,
indicating that one element has been removed from the associated subset A.
The system moves on to analize the remaining forbidden sets rotating the first
subscripts of the objects e according to the rules in (4) and (5), and erasing the
objects f . Note that the third subscript of the objects e and the subscript of
the object f are set one position ahead in order to check whether the condition
imposed by the forbidden set is satisfied. The computation corresponding to a
forbidden set finishes when an object z changes the polarization from positive to
neutral following the rule in (7).

In the first step of the computation for a forbidden set the position of the
elements in which they will be studied are one position ahead and so the system
has a step to check whether there exists an object a1 which means that the
associated subset already fulfills the condition B � A. This is done applying the
rules in (6). The objects a appear by applying the second rule in (4) when the
system removes an element belonging to several forbidden sets.

The generation stage ends when the object gnm+m+1 appears. Between the
generation stage and the calculation stage there is a gap of two steps of transition.
In the first step, according to the last rule in (8), the object gnm+m+1 evolves to
the object c0 (a counter for the calculation stage) and the object neg. This object
changes the polarization of the internal membranes to negative using the first
rule in (9). In the second step, one dissolves the membranes whose associated
subsets A have the property that there exists B ∈ F such that B ⊆ A. The
number of sets in F verifying B ⊆ A is represented by the multiplicity of the
object z. So, at the end of the generation stage, when the polarization is negative,
if there is an object z, then the membrane is dissolved by the second rule in (9).
Moreover, in this step the objects s+, s−, and o are renamed to S+, S−, and Õ
by the rules in (10), in order to avoid interference with the previous stage.

The multiplicity of the object S+ encodes the cardinality of the set S and
the multiplicity of the object S− encodes the number of elements that have
been removed from S to construct the final associated subset A. Thus, in order
to calculate the cardinality of A the system applies the rules in (11), which
implement the subtraction multiplicity(S+)−multiplicity(S−) in each internal
membrane.

The calculation stage ends when the object c2n+1 evolves to the object ch0

(a counter in the checking stage) and the object t. By using the rule in (13), t
changes the polarization of the internal membranes from negative to neutral.

In the transition stage from the calculation stage to the checking stage the
objects S+ and Õ are renamed to S and O using the rules in (13) in order to
avoid interference with the previous stages.

In the checking stage, by using the rules in (14), the system decides in each
internal membrane if the multiplicity of the object S, encoding the cardinality
of the associated subset, is greater than or equal to the multiplicity of the object
O, encoding the constant k.

The checking stage ends when the object ch2k+1 appears in the internal
membrane and then the output stage starts. If the object ch2k+1 appears when

314 M.J. Pérez Jiménez and F.J. Romero Campero

the membrane is positively charged, then the number of objects S exceeded the
number of object O and so, by using the first rule in (16), the object Y ES0 is
sent to the skin region. This object has to evolve to Y ES1, Y ES2 and, finally,
to Y ES in order to synchronize the output stage. On the other hand, if the
object ch2k+1 appears in a neutrally charged membrane, then the number of
objects S was less than or equal to the number of objects O. In this situation
the object ch2k+1, following the second rule in (16), evolves to i1 and p. This
object changes the polarization of the internal membranes to positive in order to
allow any remaining objects O to set it again to neutral according to the rules in
(14). While the membrane is positively charged the object i1 evolves to i2. If i2
appears in a positively charged internal membrane, then there were no objects
O, therefore the multiplicity of the object S was equal to the multiplicity of the
object O, and so the object Y ES is sent to the skin region according to the
rules in (17). On the other hand, if the object i2 appears in a neutrally charged
membrane, then there were objects O and so the object preNO is sent to the
skin region.

In the last step of the computation the rules in (19) send out the answer
to the environment. Note that the occurrence of the objects NO is delayed one
step, by the rule [preNO → NO]01, in order to allow the system to send out
the object Y ES, if any.

7 Required Resources

The presented family of recognizer P systems solving the Common Algorithmic
Decision Problem is polynomially uniform by Turing machines. Note that the
definition of the family is done in a recursive manner from a given instance, in
particular, from the constants n,m, and k. Futhermore, the resources required
to build an element of the family are the following:

– Size of the alphabet: n2m+4nm+2n+3m+2k+24 ∈ O((max{n,m, k})3).
– Number of membranes: 2 ∈ Θ(1).
– |M1|+ |M2| = n + m + k + 1 ∈ O(n + m + k).
– Sum of the rules’ lengths: 12n2m+12n2 + 49nm+71n+25m+ 30k+ 242 ∈

O((max{n,m, k})3).
The instance u = ({ s1, . . . , sn }, ({ s1

1, . . . , s
1
r1
}, . . . , { sm

1 , . . . , sm
rm
}), k) is in-

troduced in the initial configuration through an input multiset; that is, it is
encoded in an unary representation and, thus, we have that |u| ∈ O(n+m+ k).

The number of steps in each stage are the following:

1. Generation stage: nm + m + 1 steps.
2. Transition to the calculation stage: 2 steps.
3. Calculation stage: 2n + 1 steps.
4. Transition to the checking stage: 2 steps.
5. Checking stage: 2k + 2 steps.
6. Output stage: 6 steps.

So, the overall number of steps is nm + 2n + m + 2k + 14 ∈ O(max{n,m, k}2).

Attacking the Common Algorithmic Problem by Recognizer P Systems 315

From these discussions we deduce the following results:

Theorem 7. CADP ∈ PMCAM.

Corollary 1. NP ⊆ PMCAM, and NP ∪ co−NP ⊆ PMCAM.

8 Conclusions

Many NP-complete problems can be viewed as special cases of an optimization
problem called Common Algoritmic Problem. In this work the importance of
this problem is emphasized by the presentation of six relevant NP-complete
problems that are “subproblems” of it (or of its corresponding decision version).
Furthermore, a solution to the Common Algoritmic Decision Problem by a family
of recognizer P systems with active membranes is presented.

The study and design of solutions to locally universal problems as CAP and
CADP within the framework of unconventional computing models like P systems
seems very interesting because these solutions may give, in some sense, patterns
that can be used for attacking the solvability of many NP-complete problems.

References

1. Gutiérrez–Naranjo, M.A.; Pérez–Jiménez, M.J.; Riscos–Núñez, A. Towards a pro-
gramming language in cellular computing. In: Gh. Păun; A. Riscos–Núñez, A.
Romero–Jiménez; F. Sancho–Caparrini (eds.) Proceedings of the Second Brain-
storming Week on Membrane Computing, Report RGNC 01/04, University of
Seville, Spain, 2004, 247–257.

2. Head, T.; Yamamura, M.; Gal, S. Aqueous computing: writing on molecules. Pro-
ceedings of the Congress on Evolutionary Computation 1999, IEEE Service Center,
Piscataway, NJ, 1999, 1006–1010.

3. Păun, Gh.: Membrane Computing. An Introduction, Springer-Verlag, 2002
4. Păun, Gh.: Computing with membranes. Journal of Computer and Systems Sci-

ences, 61(1), 2000, 108–143.
5. Pérez–Jiménez, M.J.; Romero–Jiménez, A.; Sancho–Caparrini, F.: Teoŕıa de la

Complejidad en modelos de computacion celular con membranas, Ed. Kronos, 2002.
6. Pérez-Jiménez, M.J.; Riscos-Núñez, A. Solving the Subset-Sum problem by active

membranes, submitted.
7. Pérez–Jiménez, M.J.; Riscos–Núñez, A. A linear-time solution for the Knapsack

problem using active membranes. Lecture Notes in Computer Science, 2933 (2004)
140–152.

8. Pérez–Jiménez, M.J.; Romero–Campero, F.J. A CLIPS simulator for recognizer
P systems with active membranes. In: Gh. Păun; A. Riscos–Núñez; A. Romero–
Jiménez; F. Sancho–Caparrioni (eds.) Proceedings of the Second Brainstorming
Week on Membrane Computing, Report RGNC 01/04, University of Seville, Spain,
2004, 387–413.

9. Pérez–Jiménez, M.J.; Romero–Jiménez, A.; Sancho–Caparrini, F. A polynomial
complexity class in P systems using membrane division. In: E. Csuhaj-Varjú;
C. Kintala; D. Wotschke; Gy. Vaszil (eds.) Proceedings of the Fifth International
Workshop on Descriptional Complexity of Formal Systems, 2003, 284–294.

On the Minimal Automaton of the Shuffle of

Words and Araucarias

Extended Abstract

René Schott1 and Jean-Claude Spehner2

1 LORIA and IECN, Université Henri Poincaré, 54506 Vandoeuvre-lès-Nancy, France
schott@loria.fr

2 Laboratoire MAGE, FST, Université de Haute Alsace, 68093, Mulhouse, France
JC.Spehner@uha.fr

Abstract. The shuffle of k words u1,. . . , uk is the set of words obtained
by interleaving the letters of these words such that the order of appear-
ance of all letters of each word is respected. The study of the shuffle
product of words leads to the construction of an automaton whose struc-
ture is deeply connected to a family of trees which we call araucarias.
We prove many structural properties of this family of trees and give
some combinatorial results. The link with the minimal partial automa-
ton which recognizes the words of the shuffle is established. Our method
works for the shuffle of k ≥ 2 words.

Keywords: Automaton, shuffle of words, trees.

1 Introduction

Partial commutations have been intensively investigated over the two last deca-
des in connection with parallel processing [3,4,6,8,15]. Among the available pub-
lications let us mention the works done by the present authors how have designed
an efficient sequential algorithm for the generation of commutation classes [12]
and two optimal parallel algorithms on the commutation class of a given word
[13]. During our investigation, it became clear to us that some of our results
extend to the shuffle product of words. Works on shuffle products are sparse (see
[1,2,7,9,10,11,14]) and many problems remain open. It has been recognized that
these problems are difficult both from algebraic, combinatorial and algorithmic
point of views. [14] gives an algorithm which determines the shuffle of two words.
Partial commutation theory assumes that a letter never commutes with itself but,
in the shufle product, the occurrences of the same letter of two distinct words
still commute. This fundamental difference implies that the minimal automaton
of the shuffle of words contains subautomata whose graph is the opposite of a
directed tree. This paper is a (small) step towards the solution of open problems
related to the shuffle product of k ≥ 2 words written on alphabets which are
not disjoint. More precisely, it is devoted to the study of the above mentioned

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 316–327, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Minimal Automaton of the Shuffle of Words and Araucarias 317

subautomata and, in particular to the related directed trees which we call arau-
carias.
In Section 2 we give a direct definition of these araucarias, characterize their
maximal paths and finally give a construction based on the properties of the
terminal sections of the maximal paths. Then we define a family of remarkable
symmetric polynomials which play a crucial role in the computation of the size
of the araucarias.
Section 3 is devoted to the study of the minimal automaton of the shuffle prod-
uct of words. We prove that, under some assumptions, this automaton contains
the opposite of an araucaria.
Do to the lack of space some proofs are omitted.

2 Araucarias

2.1 Basic Definitions and Properties

Below we give a direct definition which is independent of the automata which
recognize the shuffle of words.

Definition 1. Any path of length p is called araucaria of type (p) and arity 1.
Such an araucaria is said to be elementary.
Let k be a strictly positive integer and (p1, . . . , pk) a sequence of k strictly positive
integers. Assume that the araucarias of arity k − 1 have been defined.
Any directed tree A such that:
- A admits a unique path τ of length p = p1 + . . .+ pk called trunk of A;
- for each i ∈ {1, . . . , k} and for each h ∈ {0, . . . , pi}, A admits a subtree Ai,h

which is isomorphic to an araucaria of type (p1, . . . , pi−1, pi+1, . . . , pk) whose
root is the node sh of τ of height h and whose leafs are leafs of A;
- for each i ∈ {1, . . . , k}, the subtrees Ai,0, . . . , Ai,pi are two by two disjoint;
- for all i, j ∈ {1, . . . , k} (i �= j) and h such that 0 ≤ h ≤ min(pi, pj) and
h �= max(pi, pj), the trunks of the araucarias Ai,h and Aj,h have only their root
sh in common;
- A is of minimal size
is called araucaria of type (p1, . . . , pk) and arity k. Such an araucaria is unique
up to an isomorphism by the proof of Theorem 1 (see below) and is denoted
A(p1, . . . , pk).
In this definition the minimality condition imposes that:
- for all i, j ∈ {1, . . . , k} (i �= j) the trunks of the araucarias Ai,pi and Aj,pj have
a common terminal section of length min(pi, pj) which is contained in τ ;
- for all i, j ∈ {1, . . . , k} (i < j) and h ∈ {0, . . . ,min(pi, pj)}, such that h �=
max(pi, pj), Ai,h and Aj,h admit a common subaraucaria of type (p1, . . . , pi−1,
pi+1, . . . , pj−1, pj+1, . . . , pk) (see Figures 1 and 2).
Each path issued from the root of a directed tree A and whose last node is a leaf
of A is said to be maximal.
Definition 1 is by induction and allows to see that, in an araucaria, each maximal
path starts with a section which is linked to an elementary subaraucaria. The
following lemma is deduced from that by induction.

318 R. Schott and J.-C. Spehner

Lemma 1. If A is an araucaria of type (p1, . . . , pk), for each maximal path σ
of A, there exist a factorisation σ1...σh of σ with 1 ≤ h ≤ k and a one-to-
one mapping η from {σ1, . . . , σh} into {1, . . . , k} such that ∀i ∈ {1, . . . , h − 1},
0 < |σi| ≤ pη(σi) and |σh| = pη(σh)

Proof. The property is trivial for k = 1. Assume that the property is verified
for each araucaria of arity smaller than or equal to k − 1 (k > 1) and let A be
an araucaria of arity k and of type (p1, . . . , pk) and let σ = (s0, s1, . . . , sf) be a
maximal path of A.
By Definition 1, there exists a node sq of A’s trunk which is distinct from s0 and a
subaraucaria A′ of A with arity less than or equal to k−1 and with root sq which
contains the section σ′ = (sq, . . . , sf) of σ. Then there exists i1 ∈ {1, . . . , k} such
that the type of A′ is equal to (p1, . . . , pi1−1, pi1+1, . . . , pk) or to one of its sub-
sequences and the section σ1 = (s0, . . . , sq) can be linked to the elementary
araucaria A(pi1). If we set η(σ1) = i1, we have 0 < |σ1| ≤ pi1 = pη(σ1).
By the induction hypothesis, σ′ admits a factorisation into at most k − 1 sec-
tions σ2, . . . , σh and there exists a one-to-one mapping η′ from {σ2, . . . , σh} to
{1, . . . , k}\{i1} such that ∀i ∈ {2, . . . , h−1}, 0 < |σi| ≤ pη(σi) and |σh| = pη(σh).
If we set η(σi) = η′(σi) for all i ∈ {2, . . . , h}, then η has the properties required
by the lemma. �

A(3) A(2) A(3,2) branch(A(3),A(2)) branch(A(2),A(3))

Fig. 1. Araucarias of arity 1 and 2 and ramified directed trees.

Definition 2. Let {A(p1), . . . , A(pk)} be a set of elementary araucarias, A a
directed tree, σ a maximal path of A and σ1...σh a factorisation of σ in sections
with strictly positive lengths.
(i) Every one-to-one mapping η from the set {σ1, . . . , σh} into {1, . . . , k} such
that, ∀i ∈ {1, . . . , h− 1}, |σi| ≤ pη(σi) and |σh| = pη(σh) is called an attribution
function to {A(p1),. . . ,A(pk)}.
For each i ∈ {1, . . . , h}, the section σi is said to be attributable to the elementary
araucaria A(pη(σi)).
If |σi| = pη(σi), then σi is said to be maximal.

On the Minimal Automaton of the Shuffle of Words and Araucarias 319

(ii) A factorisation σ1...σh of σ such that there exists an attribution function to
{A(p1), . . . , A(pk)} is called a canonical decomposition of σ (such an attribution
function is not necessarily unique).
(iii) If two maximal successive sections σ1 = (sp, . . . , sq) and σ2 = (sq, . . . , sr)
of σ attributable respectively to A(pi) and to A(pj) are supported by the trunk
τ of a subaraucaria of A with root sp and if su is the node of τ such that
u − p = r − q, then σ′

1 = (sp, . . . , su) and σ′
2 = (su, . . . , sr) are maximal sec-

tions of σ attributable respectively to A(pj) and to A(pi) which verify the equality
σ1.σ2 = σ′

1.σ
′
2.

The replacement of σ1.σ2 by σ′
1.σ

′
2 in a canonical decomposition is called a direct

pseudo-permutation.
Each succession of direct pseudo-permutations along trunks of subaraucarias of
A is called a pseudo-permutation.
(iv) A is called complete for the canonical decomposition if, ∀h ∈ {1, . . . , k}, for
each one-to-one mapping α from {1, . . . , h} into {1, . . . , k} and each sequence
(p′1, . . . , p′h) such that ∀i ∈ {1, . . . , h − 1}, 1 ≤ p′i ≤ pα(i) and p′h = pα(h), there
exists a maximal path σ which admits a canonical decomposition σ1...σh such
that ∀i ∈ {1, . . . , h}, |σi| = p′i and whose attribution function η is such that for
each i ∈ {1, . . . , h}, η(σi) = α(i).
(v) Two canonical decompositions σ = σ1...σh and σ′ = σ′

1...σ
′
h are called isomor-

phic if, for all i ∈ {1, . . . , h}, σi and σ′
i have the same length and are attributable

to the same elementary araucaria.

s0 s
s

s

e0

e

e1

e2

s6=e3=f1=g2

g1

gg0

s2

s1

s3

s4

s5

f0

f

A(3,2,1) A(2,1)

A(3,2)

A(3,1)

Fig. 2. The araucaria A(3, 2, 1) has 4 subaraucarias isomorphic to A(2, 1), 3
subaraucarias isomorphic to A(3, 1) and 2 subaraucarias isomorphic to A(3, 2).

320 R. Schott and J.-C. Spehner

Theorem 1. A directed tree A is an araucaria of type (p1, . . . , pk) if and only
if
(i) each maximal path of A admits a canonical decomposition and this decompo-
sition is unique up to a pseudo-permutation;
(ii) A is complete for the canonical decomposition.

Proof. (i) We follow the proof of Lemma 1 with the same notations but in ad-
dition to the induction hypotheses we assume unicity up to a pseudo-permutation
and completeness. These properties are trivially verified for k = 1. Assume now
that k > 1 and let σ1 = (s0, . . . , sq) be the first section of the canonical decom-
position σ1...σh of a maximal path σ.
If the nodes sq−1 and sq+1 do not belong to a same trunk of a subaraucaria of
A and in particular if σ1 is not maximal, the only pseudo-permutations of the
factorisation σ1...σh of σ are these of σ′ = σ2...σh and this proves the unicity of
the factorisation of σ in this case.
In the opposite case, there exists a trunk τ of a subaraucaria of A which con-
tains the sections σ1, ..., σg of σ but not σg+1 when g < h. If g > 2, the
pseudo-permutation of σ1.σ2 exits by Definition 2 and since, by induction, all
the pairs of the set {σ2, ..., σg−1} if g < h [resp. {σ2, ..., σg} if g = h] are pseudo-
permutable, all the pairs of the set {σ1, ..., σg−1} [resp. {σ1, ..., σg}] are also
pseudo-permutable. This proves the unicity of the factorisation of σ up to a
pseudo-permutation also in this case.
By Definition 1, η(σ1) can be any element of {1, . . . , k} and |σ1| can take any
value between 1 and pη(σ1). By induction, it follows that A is complete for the
canonical decomposition.
(ii) The converse is trivial for k = 1.
Assume that the converse is true for each directed tree which verifies the prop-
erty for at most k − 1 elementary araucarias and let B be a directed tree
whose maximal paths admit all a canonical decomposition relatively to the set
{A(p1),. . . ,A(pk)} of elementary araucarias and that such a decomposition is
unique up to a pseudo-permutation.
Let s0 be the root of B. Suppose that σ1 = (s0, . . . , sq) is a section attributable
to some elementary araucaria A(pi) with i ∈ {1, . . . , k}. For each maximal path
σ = (s0, . . . , sf) of B which admits a canonical decomposition whose first factor
is equal to a σ1 and is attributable to A(pi), σ′ = (sq, . . . , sf) admits also such a
decomposition and, by the induction hypothesis, the subtree B′ of B with root sq

is a directed subtree of an araucaria whose type is a subsequence of (p1, . . . , pk)
which does not contain pi. It follows by Definition 1 that B is a directed subtree
of an araucaria of type (p1, . . . , pk).
Moreover if all directed subtrees B′ of B are complete for the canonical de-
composition, the same is true for B and this proves that B is an araucaria by
induction on k.
Hence there exists an unique araucaria A(p1, . . . , pk) of type (p1, . . . , pk) up to
an isomorphism. �

On the Minimal Automaton of the Shuffle of Words and Araucarias 321

Definition 3. (i) If σ = (s0, . . . , sf) is a maximal path in an araucaria A, a
section τ = (si, . . . , sj) of σ is called a truncation of σ if it is supported by the
trunk of A or of one of its subaraucarias and is maximal with respect to this
property. A truncation τ is called terminal if its last node is a leaf of A.
(ii) If σ is a maximal path, each factorisation σ = τ1...τt whose factors are
truncations is called a decomposition into truncations.
The number of truncations is called the rank of σ.

It follows that each terminal truncation is the product of attributable maximal
pseudo-permutable sections and each maximal path of an araucaria admits a
decomposition into truncations and this decomposition is unique.

2.2 Shuffle Product of Elementary Araucarias

The proof of Theorem 2 below uses the last attributable section although the
proof of Theorem 1 uses the first attributable section. This new characterization
of the auracarias will be used in the next section.

Definition 4. Let A = (S,U) be a directed tree and σ = (c0, . . . , cr) a path of
length r.
Let, for each node s of A, σ(s) = (s0, . . . , sr) be a path isomorphic to σ such
that s0 = s and S ∩ {s1, . . . , sr} = ∅ and such that, for each node t of A distinct
from s, c(s) ∩ c(t) = ∅.
The directed tree C obtained by connecting A with all paths σ(s) for s ∈ S is
called the ramified directed tree of A with respect to σ and is denoted branch(A, σ)
(see Figure 1).

Lemma 2. Let (p1, . . . , pk) be a sequence of strictly positive integers, i and
j such that 0 < i ≤ k, 0 < j ≤ k and i �= j, Ai and Aj araucarias of types
respectively (pi+1, . . . , pk, p1, . . . , pi−1) and (pj+1, . . . , pk, p1, . . . , pj−1).
For each maximal path σ of A′

i = branch(Ai, A(pi)), there exists a maximal path
σ′ of A′

j = branch(Aj , A(pj)) such that σ and σ′ admit isomorphic canonical
decompositions up to a pseudo-permutation if and only if the terminal truncation
τ of σ contains a maximal section which is attributable to A(pj).

Proof. The proof is omitted. �

Definition 5. (i) Let σ = (s0, . . . , sh) and σ′ = (s′0, . . . , s
′
h) be two paths of equal

length in a graph G. Merging σ and σ′ consits in merging, for all i of {0, . . . , h},
the nodes si and s′i into an unique node, and for all i in {0, . . . , h−1} in merging
the edges (si, si+1) and (s′i, s

′
i+1) into an unique edge.

(ii) Let k be an integer such that 1 < k and let (p1, . . . , pk) be a sequence of
strictly positive integers.
∀i ∈ {1, . . . , k}, let Ai be an araucaria of type (pi+1, . . . , pk, p1, . . . , pi−1) and
A′

i = branch(Ai, A(pi)) and let B be the disjoint union of the directed trees
A′

1, . . . , A
′
k.

322 R. Schott and J.-C. Spehner

The directed graph A obtained by merging for each couple of maximal paths (σ, σ′)
of B having isomorphic canonical decompositions up to a pseudo-permutation,
the terminal truncations of σ and σ′, is called the shuffle product of the elemen-
tary araucarias A(p1), . . . , A(pk).

Theorem 2. Let k be an integer such that k > 1 and (p1, . . . , pk) any sequence
of strictly positive integers.
The shuffle product of the elementary araucarias A(p1), . . . , A(pk) is an arau-
caria of type (p1, . . . , pk).

Proof. (i) It is not difficult to see that the directed graph A is a directed tree.
(ii) For each i ∈ {1, . . . , k}, since the araucaria Ai is of type (pi+1, . . . , pk, p1,

. . . , pi−1), each maximal path σ of Ai admits a canonical decomposition into
sections σ1, . . . , σh attributable to two by two distinct elementary araucarias of
the set {A(p1),. . . ,A(pi−1), A(pi+1),. . . ,A(pk)} by Theorem 1 and this decom-
position is unique up to a pseudo-permutation. The extremity e of σ is a leaf
and, if σh+1 is the path issued from e which is isomorphic to A(pi), the path
σ′ = σ.σh+1 in the ramified directed tree A′

i = branch(Ai, A(pi)) is maximal
and admits σ1...σh.σh+1 as canonical decomposition and this decomposition is
unique up to a pseudo-permutation in A′

i. By the proof of Theorem 1, A′
i is

isomorphic to a directed subtree of the araucaria of type (p1, . . . , pk).
(iii) Since, as in the construction of A, we join together all the directed trees

A′
1,. . . ,A

′
k and then by Lemma 2, we merge all pairs of maximal paths which

admit isomorphic canonical decompositions up to a pseudo-permutation, each
maximal path of A admits a canonical decomposition and this decomposition is
unique up to a pseudo-permutation.
Since, for each i ∈ {1, . . . , k} the araucaria Ai is complete for the canonical de-
composition, A′

i contains all maximal paths whose terminal section is attibutable
to A(pi). It follows that A is complete for the canonical decomposition. By The-
orem 1, A is therefore an araucaria of type (p1, . . . , pk). �

2.3 The Size of an Araucaria

Now we introduce a family of remarkable polynomials which will be helpful for
the calculation of the size of the araucarias.

Definition 6. Let {X1, . . . , Xk} be a set of k variables.
For each m ∈ {1, . . . , k}, let Ψm(X1, . . . , Xk) be the polynomial sum of the
products of m two by two distinct variables of the set {X1, . . . , Xk} and let
Ψ0(X1, . . . , Xk) = 1.
The polynomial Υk(X1, . . . , Xk) =

∑m=k
m=0 m!∗Ψm(X1, . . . , Xk) is called the arau-

caria polynomial in k variables.
The first araucaria polynomials are Υ1(X1) = X1 + 1, Υ2(X1, X2) = 2X1X2 +
X1 +X2 +1 and Υ3(X1, X2, X3) = 6X1X2X3 +2(X1X2 +X2X3 +X3X1)+X1 +
X2 + X3 + 1.

On the Minimal Automaton of the Shuffle of Words and Araucarias 323

Theorem 3. For each cyclic permutation χ of the set {1, . . . , k},

i=k∑
i=1

Υk−1(Xχi(1), . . . , Xχi(k−1)) ∗Xχi(k) + 1 = Υk(X1, . . . , Xk).

Proof sketch. This property results from the following equality∑i=k
i=1 Ψm(Xχi(1), . . . , Xχi(k−1)) ∗Xχi(k) = (m + 1) ∗ Ψm+1(X1, . . . , Xk)

Theorem 4. An araucaria of arity k and of type (p1, . . . , pk) has a size equal
to Υk(p1, . . . , pk) and the number of internal nodes is equal to k! ∗ p1 ∗ . . . ∗ pk.

Proof. (i) If k = 1, for each strictly positive integer p1, the araucaria A(p1)
is reduced to a path of length p1; its size is therefore p1 + 1 = Υ1(p1).
Assume that the size of each araucaria of arity k − 1 is given by the araucaria
polynomial in k − 1 variables and let A be an araucaria of arity k and of type
(p1, . . . , pk). By Theorem 2, A is isomorphic to the shuffle product of the ele-
mentary araucarias A(p1), . . . , A(pk).
Let, for all i ∈ {1, . . . , k}, Ai be an araucaria of type (pi+1, . . . , pk, p1, . . . , pi−1)
and A′

i = branch(Ai, A(pi)). By Definition 5, if B is the disjoint union of the
directed trees A′

1, . . . , A
′
k, then A is obtained by merging, in B, the terminal

truncations of each couple of maximal paths (σ, σ′) which admit isomorphic
canonical decompositions up to a pseudo-permutation.
Let, for each i of {1, . . . , k}, Vi be the set of nodes of A′

i which do not belong
to the directed subtree Ai. By Lemma 2 and the proof of Theorem 2, we can
realize the merging of the terminal truncations for all couples of maximal paths
(σ, σ′) with respect to increasing rank.
Let σ be a maximal path of A and let τ be its terminal truncation. Since τ is a
product of maximal attributable pseudo-permutable sections, there exist sections
σ1, . . . , σh respectively attributable to A(pi1), . . . , A(pih

) where i1 < . . . < ih.
∀i ∈ {1, . . . , h}, let σ′

i be the set of nodes of σi distinct from the first node.
Since σ is a path of A′

i if and only if τ contains a section which is attributable to
A(pi), none of the sets σ ∩ Vi1 , . . . , σ ∩ Vih

is empty. These sets are not disjoint
but if we replace, for each g ∈ {2, . . . , h}, the part σ ∩ Vig of Vig by the set σ′

g

then they become two by two disjoint.
Let V ′

1 , . . . , V
′
k be the residual sets obtained respectively from V1, . . . , Vk by these

substitutions for all maximal path of A whose terminal truncation is not re-
duced to a unique attributable section. Then, for each maximal path of A,
the sets V ′

1 ∩ σ, . . . , V ′
k ∩ σ which are not empty, are two by two disjoint and

(V ′
1 ∩ σ) ∪ . . . ∪ (V ′

k ∩ σ) contains all nodes of σ distinct from the first node. It
follows that the residual sets V ′

1 , . . . , V
′
k are two by two disjoint and V ′

1 ∪ . . .∪V ′
k

contains all nodes of A out of the root. Hence, card(A) = 1 +
∑i=k

i=1 card(V
′

i).
Since, for each i ∈ {1, . . . , k}, each replacement of a part of Vi does not modify
its cardinality, card(V ′

i) = card(Vi).
Moreover each node t of Vi is the extremity of an edge which belongs to a sec-
tion which is attribuable to A(pi) and the set of these edges is the union of

324 R. Schott and J.-C. Spehner

all sections attributable to A(pi). It follows, by the induction hypothesis, that
card(Vi) = pi ∗ Υk−1(pi+1, . . . , pk, p1, . . . , pi−1). Therefore,
card(A) = 1 +

∑i=k
i=1 card(Vi) = 1 +

∑i=k
i=1 pi ∗ Υk−1(pi+1, . . . , pk, p1, . . . , pi−1)

and, by Theorem 3, card(A) = Υk(p1, . . . , pk).
(ii) We can prove, thanks to a double induction on k and pk, that an araucaria
of arity k and of type (p1, . . . , pk) has

∑m=k−1
m=0 m! ∗ Ψm(p1, . . . , pk) leaves. �

3 On Some Subautomatas of the Minimal Automaton of
the Shuffle of a Set of Words u1, u2, ..., uk

Definition 7. (i) Let u and v be two words of the free monoid A∗.
The language whose words are of the form u1v1u2v2 . . . umvm where u1u2 . . . um

is a factorisation of u, v1v2 . . . vm a factorisation of v and the factors u1 and
vm are possibly empty, is called the shuffle of the words u and v and is denoted
u �� v.
(ii) If I and J are two languages of A∗, the union of the sets u �� v for u ∈ I
and v ∈ J is called the shuffle of the languages I and J and is denoted I �� J .
(iii) Let u1, . . . , uk be k words of A∗. If we assume that the shuffle K of the
words u1, . . . , uk−1 is defined, the language L = K �� uk is called the shuffle of
the words u1, . . . , uk and is denoted

L = u1 �� . . .�� uk.

Definition 8. (i) Let u = a1 . . . an be a word of length n of A∗. The par-
tial automaton PA(u) whose set of states is {s0, . . . , sn}, whose transitions are
(si, ai, si+1) with i ∈ {0, . . . , n−1}, s0 the initial state and sn the terminal state,
is called the partial minimal automaton of u.
(ii) Let u1, . . . , uk be k words of A∗, L = u1 �� . . .�� uk, A(L) the minimal
automaton of L and d its initial state.
Since all words of L have the same length, A(L) has an unique terminal state f
and an absorbing state z (∀a ∈ A, z.a = z).
The partial automaton PA(L) obtained from A(L) by deleting the absorbing state
z and all transitions towards z or issued from z, is called the partial minimal
automaton of L.

Definition 9. (i) Let S0 be the set of states of the partial minimal automa-
ton PA(K), d0 the initial state of PA(K), f0 its unique terminal state and
uk = a1 . . . an.
For each i ∈ {0, . . . , n}, let θi : s → s(i) be an isomorphism from PA(K) on an
automaton PA(K)(i) such that the sets S(i) = θi(S0) are two by two disjoint.
The non-deterministic automaton M1(L) which is the disjoint union of the par-
tial automata PA(K)(0), . . . , PA(K)(n) and which admits, for each s ∈ S0

and each i ∈ {0, . . . , n − 1}, (s(i), ai+1, s
(i+1)) as transition, is called the shuf-

fle product of the partial automata PA(K) and PA(uk) and its denotation is

On the Minimal Automaton of the Shuffle of Words and Araucarias 325

PA(K) �� PA(uk). It admits S1 = S
(0)
0 ∪ . . . ∪ S

(n)
0 as set of states, d1 = d

(0)
0

as initial state and f1 = f
(n)
0 as terminal state.

Each transition of the form (s(i), ai+1, s
(i+1)) is called vertical and each transi-

tion of one of the partial automata PA(K)(i) is called horizontal.
The non-deterministic automaton PA(K) �� PA(uk) recognizes the language L.
(ii) Let M ′

2(L) be the subautomaton of the automaton of parts of
PA(K) �� PA(uk) generated by d2 = {d1}.
The partial subautomaton M2(L) of the automaton M ′

2(L) obtained by deleting
the empty set of S1, is called the determinization of M1(L) = PA(K) �� PA(uk).

Definition 10. (i) From now on we will study the following particular case:
∀i ∈ {1, . . . , k}, the word ui is of the form ui = bia

pici with strictly positive
integers p1, . . . , pk and two by two disjoint letters of {b1, . . . , bk} ∪ {c1, . . . , ck}
up to the equalities b1 = c1, . . . , bk = ck.
Such a set (u1, . . . , uk) is called special.
(ii) Let d be the initial state of the partial minimal automaton PA(L) and let T
be the set of states t such that there exist
- left factors v1,..., vk respectively of u1,..., uk such that, for all i of {1, ...k},
1 ≤ |vi| ≤ 1 + pi

- and a word v of v1 �� . . . �� vk such that t = d.v.
The partial automaton N of PA(L) which admits T as set of states and the
a-transitions of the form (t, a, t.a) such that t.a ∈ T as only transitions, is called
the nest of a-transitions in PA(L) (see Figure 3).
(iii) A state t of T is called an entry for the letter bi if there exists a state s in
PA(L) and a transition (s, bi, t) from s to t.
(iv) The definition of the nest of a-transitions in the non deterministic automata
PA(K) �� PA(uk) is similar.

Lemma 3. Let (u1, . . . , uk) be a special set of words and let N0 and N be the
respective nests of a-transitions of PA(K) and PA(L).
If the opposite graph G0 of the graph of the nest N0 is a directed tree, then
the opposite graph G of the graph of the nest N admits a subgraph which is
isomorphic to the ramified directed tree branch(G0, A(pk)).

Proof. The proof is omitted. �

Theorem 5. If the set (u1, . . . , uk) is special, the graph of the nest N of a-
transitions in the automaton PA(L) is the opposite of an araucaria of type
(p1, . . . , pk)

Proof. (i) The property is trivial for k = 1.
Assume that, for each sequence (p1, . . . , pk−1) of strictly positive integers, the
graph of the nest of a-transitions in PA(K) is the opposite of an araucaria of
type (p1, . . . , pk−1).

326 R. Schott and J.-C. Spehner

a a

a

a

a
a

a

a

a

aa

a

a ab

b

b

b

b

b b

b

b

b

b
b

b

b

b

b

b

c

cccc
c

c

cc

cccc

a

a

a

a a

a aa
a

a

a

a

a

a a

a

a

a

aa

a a

a

a

a a

a aa

a

a ab

b

b

b

b

b b

b

b

b

b

b

c

ccccc

cccc

a

a

a a

a aa

a

2(1)
3(1) 4(1)

2(2) 3(2) 4(2)

2(3) 3(3) 4(3)

2(4) 3(4) 4(4)

2(1)
3(1)

2(2)

5(1)

2(3)

5(2)

5(3)

5(4)

4(3)

4(2)

4(1)

4(4)3(4)

4(5)3(5)2(5)

2(4)

(a) (b)

Fig. 3. Let u1 = baab, N0 the nest of PA(u1), u2 = caaac and L = u1 �� u2. (a)
The nondeterministic nest N1 = N0 �� PA(a3) in PA(u1) �� PA(u2) ; (b) The
corresponding nest N in the partial minimal automaton PA(L) and its subgraph
which is the opposite of an araucaria of type (2, 3).

By Lemma 3, the opposite graph G of the graph of the nest N contains a directed
subtree A′

k which is isomorphic to the ramified directed tree branch(Ak, A(pk))
where Ak is an araucaria of type (p1, . . . , pk−1).
Since, for each permutation χ of {1, . . . , k}, the languages uχ(1) �� . . .�� uχ(k)

and u1 �� . . .�� uk are the same, the graph G contains also, for each i ∈
{1, ..., k − 1}, a directed subtree A′

i which is isomorphic to branch(Ai, A(pi))
where Ai is an araucaria of type (pi+1, . . . , pk, p1, . . . , pi−1).
Since A′

k contains all entries relative to the letter bk, the same thing happens for
the other entry letters b1, . . . , bk−1. G is therefore covered by the directed trees
A′

1, . . . , A
′
k.

(ii) For each entry e relative to a letter bi in the nest N0 of a-transitions in the
automaton PA(K), e(1) is simultaneously an entry for bi and for bk by Lemma
3. If κ is the canonical morphism from M2(L) on PA(L), there exists therefore,
in G, a maximal path σ from the root r of G to the node κ(e(1)) and this node is
common to the subtrees A′

i and A′
k. The directed trees A′

i and A′
k are therefore

merged with respect to the maximal path σ. The same argument applies for
each common entry of any number of letters of {b1, . . . , bk−1} and, permuting
the words u1, . . . , uk, to each part of {b1, . . . , bk}.
First we merge the paths issued from the root which end with the unique entry
common to all letters of {b1, . . . , bk}, then we do the same thing for the entries
common to k − 1 letters and so forth until the common entries of two letters.
The operation consists then in merging the terminal truncations.

On the Minimal Automaton of the Shuffle of Words and Araucarias 327

G is therefore isomorphic to the shuffle product of the elementary araucarias
A(p1), . . . , A(pk) and is, by Theorem 2, isomorphic to an araucaria of type
(p1, . . . , pk). �

4 Conclusion

In this paper we have investigated directed trees which appear in the construction
of the minimal automaton of the shuffle of words. More results concerning this
automaton have already been proved or are the object of work in progress. In
particular, we hope to be able to prove that, if the set of words is special, then
the size of the partial minimal automaton of the shuffle of words is maximal.
The design of an optimal algorithm for the construction of this automaton is
under investigation by the present authors.

References

1. Allauzen C., Calcul efficace du shuffle de k mots, Prépublication de l’Institut Gas-
pard Monge, 36, 2000.

2. Berstel J. and Boasson L., Shuffle factorization is unique, Prépublication de
l’Institut Gaspard Monge, 16, 1999.

3. Cori R. and Perrin D., Automates et commutations partielles, RAIRO Inf. Theor.,
19, 1985, 21-32.

4. Diekert V., Combinatorics of traces, Lecture Notes in Computer Science, 454,
Springer Verlag, 1990.

5. Eilenberg S., Automata, Languages and Machines, Academic Press, 1974.
6. Françon J., Une approche quantitative de l’exclusion mutuelle, Theoretical Infor-

matics and Applications, 20, 3 (1986) 275-289.
7. Gómez A. C. and Pin J.-E., On a conjecture of Schnoebelen, Lecture Notes in

Computer Science, 2710 (2003), 35-54.
8. Lothaire M., Combinatorics on words, Addison-Wesley, Reading, MA, 1982.
9. Mateescu A., Shuffle of ω-words: algebraic aspects, Proceedings of STACS 98,

Lecture Notes in Computer Science, 1373, 150-160, Springer Verlag 1998.
10. Nivat M., Ramkumar G.D.S., Pandu Rangan C., Saoudi A., and Sundaram R.,

Efficient parallel shuffle recognition, Parallel Processing Letters, 4, 455-463, 1994.
11. Schnoebelen P., Decomposable regular languages and the shuffle operator, EATCS

Bull., 67, 1999, 283-289.
12. Schott R. and Spehner J.-C., Efficient generation of commutation classes, Journal

of Computing and Information, 2, 1, 1996, 1110-1132.
Special issue: Proceedings of Eighth International Conference of Computing and
Information (ICCI’96), Waterloo, Canada, June 19-22, 1996.

13. Schott R. and Spehner J.-C., Two optimal parallel algorithms on the commutation
class of a word, Theoretical Computer Science, 324, 107-131, 2004.

14. Spehner J.-C., Le calcul rapide des mélanges de deux mots, Theoretical Computer
Science, 47 (1986), 181-203.

15. Zielonka W., Notes on finite asynchronous automata and trace languages, RAIRO
Inf. Theor., 21, 1987, 99-135.

Author Index

Alhazov A., 82

Bandini S., 93
Blondel V.D., 104
Bournez O., 116

Calude C.S., 1
Castiglione G., 128
Cattaneo G., 140
Cavaliere M., 153
Colmerauer A., 18
Costa J.F., 164

Delvenne J.-C., 104
Dennunzio A., 140
Durand-Lose J., 176

Evans K.M., 188

Freund R., 82, 200

Hainry E., 116
Hatayama N., 211
Hisaoka M., 223
Holzer M., 233

Imai K., 211
Iwamoto C., 211

Karhumäki J., 36
Kato H., 245
Kůrka P., 104
Kutrib M., 233

Leporati A., 200, 257
Leupold P., 153

Maeda M., 223
Manea F., 269
Mart́ın-Vide C., 269
Mauri G., 93, 257
Mitrana V., 269
Morita K., 211, 245
Mycka J., 164

Néraud J., 281

Ogiro T., 245
Okhotin A., 292
Oswald M., 200

Păun G., 82
Pavesi G., 93
Pérez Jiménez M.J., 304

Restivo A., 128
Romero Campero F.J., 304

Schott R., 316
Simone C., 93
Spehner J.-C., 316
Sutner K., 50

Tanaka K., 245
Teraoka M., 223

Umeo H., 223

Wagner K.W., 60
Wakamatsu D., 211

Zandron C., 200, 257

	Frontmatter
	Invited Lectures
	Algorithmic Randomness, Quantum Physics, and Incompleteness
	On the Complexity of Universal Programs
	Finite Sets of Words and Computing
	Universality and Cellular Automata
	Leaf Language Classes

	Selected Contributions
	Computational Completeness of P Systems with Active Membranes and Two Polarizations
	Computing with a Distributed Reaction-Diffusion Model
	Computational Universality in Symbolic Dynamical Systems
	Real Recursive Functions and Real Extensions of Recursive Functions
	Ordering and Convex Polyominoes
	Subshifts Behavior of Cellular Automata. Topological Properties and Related Languages
	Evolution and Observation: A Non-standard Way to Accept Formal Languages
	The Computational Power of Continuous Dynamic Systems
	Abstract Geometrical Computation for Black Hole Computation
	Is Bosco's Rule Universal?
	Sequential P Systems with Unit Rules and Energy Assigned to Membranes
	Hierarchies of DLOGTIME-Uniform Circuits
	Several New Generalized Linear- and Optimum-Time Synchronization Algorithms for Two-Dimensional Rectangular Arrays
	Register Complexity of <Literal>LOOP</Literal>-, <Literal>WHILE</Literal>-, and <Literal>GOTO</Literal>-Programs
	Classification and Universality of Reversible Logic Elements with One-Bit Memory
	Universal Families of Reversible P Systems
	Solving 3CNF-SAT and HPP in Linear Time Using WWW
	Completing a Code in a Regular Submonoid of the Free Monoid
	On Computational Universality in Language Equations
	Attacking the Common Algorithmic Problem by Recognizer P Systems
	On the Minimal Automaton of the Shuffle of Words and Araucarias

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

